Toggle light / dark theme

Seventy-five people filed into a Washington State Convention Center meeting room Wednesday to hear about the latest advancements in artificial intelligence. In a pitching session reminiscent of a speed-dating event, about 10 Northwest startups hurriedly shared their accomplishments and aspirations with Japanese investors eager to stoke business relationships.

Master of ceremonies Tom Sato, co-founder of Kirkland-based investing firm Innovation Finders Capital, lightened the mood by cracking jokes as he translated the English-speaking founders’ business plans into Japanese, cautioning the attendees that he faced a challenge: “I have to understand what the hell they’re talking about.”

The A.I. Age | This 12-month series of stories explores the social and economic questions arising from the fast-spreading uses of artificial intelligence. The series is funded with the help of the Harvard-MIT Ethics and Governance of AI Initiative. Seattle Times editors and reporters operate independently of our funders and maintain editorial control over the coverage.

Three New Jersey teens brought home two international awards for their artificial intelligence robot, who competed at the International Robocup Junior Championship in Sydney, Australia earlier this month.

The team — made up of high school juniors Julian Lee of Livingston and Jeffrey Cheng from Bridgewater, and senior Alexander Lisenko, also of Bridgewater — won the third place World Title for Individual Team Tournament, and the Judge’s Award for Best Rescue Engineering Strategy in the Rescue Maze League.

The trio belongs to Storming Robots, a New Jersey-based Robotics Learning Lab, and competed against teams of 14- to 19-year-olds from around the world in the July 4–9 contest.

If your interest lies with robotics there are a multitude of different platforms for you to build. [Teemu Laurila] was frustrated with what was on offer, so designed his own with four-wheel double wishbone suspension and mecanum wheels for maximum flexibility.

It’s a design that has been through multiple revisions since its first iteration in 2015, and along the way it’s clear some thought has gone into it. That double wishbone suspension features an angle for a high ground clearance, and is fully sprung. Drive comes from small motor/gearboxes at each axle. The chassis meanwhile has plenty of space for a single-board computer, and has been specifically designed with the BeagleBone Black in mind.

This build isn’t fully DIY, as the mecanum wheels appear to be off-the-shelf items, but the rest of the project makes up for this. If you need to make your own, it’s hardly as though there aren’t any projects from which you can borrow components.

Imagine a patient controlling the movement of his or her prosthetic limb simply by thinking of commands. It may sound like science fiction but will soon become reality thanks to the EU-funded DeTOP project. A consortium of engineers, neuroscientists and clinicians has made great strides in further developing the technology behind more natural and functional prostheses.

The team uses an osseointegrated human-machine gateway (OHMG) to develop a physical link between a person and a robotic prosthesis. A patient in Sweden was the first recipient of titanium implants with the OHMG system. The OHMG is directly fitted to bones in the user’s arms, from which electrodes to nerves and muscle extract signals to control a robotic hand and provide tactile sensations. According to a news item by “News Medical,” the patient will begin using a training prosthesis in the next few months before being fitted with the new artificial hand developed by DeTOP partners. This will help the team evaluate the entire system, including the implanted interface, electronics, as well as wrist and hand functions. Motor coordination and grip strength will also be assessed during the tests.

From interpreting CT scans to diagnosing eye disease, artificial intelligence is taking on medical tasks once reserved for only highly trained medical specialists — and in many cases outperforming its human counterparts.

Now AI is starting to show up in intensive care units, where hospitals treat their sickest patients. Doctors who have used the new systems say AI may be better at responding to the vast trove of medical data collected from ICU patients — and may help save patients who are teetering between life and death.

Research on robotic prostheses is coming along in leaps and bounds, but one hurdle is proving quite tricky to overcome: a sense of touch. Among other things, this sense helps us control our grip strength — which is vitally important when it comes to having fine motor control for handling delicate objects.

Enter a new upgrade for the LUKE Arm — named for Luke Skywalker, the Star Wars hero with a robotic hand. Prototype versions of this robotic prosthesis can be linked up to the wearer’s nerves.

And, thanks to biomedical engineers at the University of Utah, for the participants of their experimental study, the arm can now also produce an ability to feel. This spectacular advance allowed one wearer to handle grapes, peel a banana, and even feel his wife’s hand in his.

Click on photo to start video.

Though some computer engineers claim to know what human consciousness is, many neuroscientists say that we’re nowhere close to understanding what it is — or its source.

In this video, bestselling author Douglas Rushkoff gives the “transhumanist myth” — the belief that A.I. will replace humans — a reality check. Is it hubristic to upload people’s minds to silicon chips, or re-create their consciousness with algorithms, when we still know so little about what it means to be human?

You can read more about Rushkoff’s perspective on this issue in his new book, Team Human.