This robot is a ridiculously fast pizza chef.
Category: robotics/AI – Page 2,044
Damon’s Hypersport AI Boosts Motorcycle Safety
https://www.youtube.com/watch?v=fzsteGTpbLQ
For all its pure-electric acceleration and range and its ability to shapeshift, the Hypersport motorcycle shown off last week at CES by Vancouver, Canada-based Damon Motorcycles matters for just one thing: It’s the first chopper swathed in active safety systems.
These systems don’t take control, not even in anticipation of a crash, as they do in many advanced driver assistance systems in cars. They leave a motorcyclist fully in command while offering the benefit of an extra pair of eyes.
Why drape high tech “rubber padding” over the motorcycle world? Because that’s where the danger is: Motorcyclists are 27 times more likely to die in a crash than are passengers in cars.




AlphaFold makes its mark in predicting protein structures
Players applaud, say words like Whoo, bang plastic knives on the table and enjoy the best weekends with artificial intelligence as the main act, thanks to AI unleashed in games.
WIRED UK’s science editor, Matt Reynolds, looked at DeepMind’s impact on AI milestones: “It has outplayed Go champions, bested professional StarCraft players and turned its attention to chess and shogi.”
Let the games continue but the serious stuff must seriously shine. In brief, we can admire that unleashing AI for the purpose of scientific discovery has become especially alive and well thanks to research at DeepMind.

Seeing Around the Corner With Lasers—and Speckle
Researchers have developed a new way to use lasers to see around corners that beats the previous technique on resolution and scanning speed. The U.S. military is interested for obvious reasons, and NASA wants to use it to image caves. The technique might one day also let rescue workers peer into earthquake-damaged buildings and help self-driving cars navigate tricky intersections.
Researchers from Rice, Stanford, Princeton, and Southern Methodist University have developed a new way to use lasers to see around corners that beats the previous technique on resolution and scanning speed. The findings appear today in the journal Optica.
The U.S. military—which funded the work through DARPA grants—is interested for obvious reasons, and NASA wants to use it to image caves, perhaps doing so from orbit. The technique might one day also let rescue workers peer into earthquake-damaged buildings and help self-driving cars navigate tricky intersections.
One day. Right now it’s a science project, and any application is years away.


AI Can Spot Low Glucose Levels Without Fingerprick Test
Researchers have developed a new Artificial Intelligence (AI)-based technique that can detect low-sugar levels from raw ECG signals via wearable sensors without any fingerprint test. Current methods to measure glucose requires needles and repeated fingerpicks over the day. Fingerpicks can often be painful, deterring patient compliance.
The new technique developed by researchers at University of Warwick works with an 82 per cent reliability, and could replace the need for invasive finger-prick testing with a needle, especially for kids who are afraid of those.
“Our innovation consisted in using AI for automatic detecting hypoglycaemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said Dr Leandro Pecchia from School of Engineering in a paper published in the Nature Springer journal Scientific Reports.

Beyond Genuine Stupidity – Making Smart Choices About Intelligent Infrastructure
We’re at a fascinating point in the discourse around artificial intelligence (AI) and all things “smart”. At one level, we may be reaching “peak hype”, with breathless claims and counter claims about potential society impacts of disruptive technologies. Everywhere we look, there’s earnest discussion of AI and its exponentially advancing sisters – blockchain, sensors, the Internet of Things (IoT), big data, cloud computing, 3D / 4D printing, and hyperconnectivity. At another level, for many, it is worrying to hear politicians and business leaders talking with confidence about the transformative potential and societal benefits of these technologies in application ranging from smart homes and cities to intelligent energy and transport infrastructures.
Why the concern? Well, these same leaders seem helpless to deal with any kind of adverse weather incident, ground 70,000 passengers worldwide with no communication because someone flicked the wrong switch, and rush between Brexit crisis meetings while pretending they have a coherent strategy. Hence, there’s growing concern that we’ll see genuine stupidity in the choices made about how we deploy ever more powerful smart technologies across our infrastructure for society’s benefit. So, what intelligent choices could ensure that intelligent tools genuinely serve humanity’s best future interests.
Firstly, we are becoming a