Toggle light / dark theme

Tissue biopsy slides stained using hematoxylin and eosin (H&E) dyes are a cornerstone of histopathology, especially for pathologists needing to diagnose and determine the stage of cancers. A research team led by MIT scientists at the Media Lab, in collaboration with clinicians at Stanford University School of Medicine and Harvard Medical School, now shows that digital scans of these biopsy slides can be stained computationally, using deep learning algorithms trained on data from physically dyed slides.

Pathologists who examined the computationally stained H&E images in a blind study could not tell them apart from traditionally stained slides while using them to accurately identify and grade prostate cancers. What’s more, the slides could also be computationally “de-stained” in a way that resets them to an original state for use in future studies, the researchers conclude in their May 20 study published in JAMA Network Open.

This process of computational digital staining and de-staining preserves small amounts of tissue biopsied from cancer patients and allows researchers and clinicians to analyze slides for multiple kinds of diagnostic and prognostic tests, without needing to extract additional tissue sections.

https://facebook.com/LongevityFB https://instagram.com/longevityyy https://twitter.com/Longevityyyyy https://linkedin.com/company/longevityy

- Please also subscribe and hit the notification bell and click “all” on these YouTube channels:

https://youtube.com/Transhumania
https://youtube.com/BrentNally
https://youtube.com/EternalLifeFan
https://youtube.com/MaxEternalLife
https://youtube.com/LifespanIO
https://youtube.com/LifeXTenShow
https://youtube.com/BitcoinComOfficialChannel
https://youtube.com/RogerVer
https://youtube.com/RichardHeart
https://youtube.com/sciVive

Follow Peter Voss on social media:

https://linkedin.com/in/vosspeter
https://facebook.com/petervoss
https://medium.com/@petervoss

Check out projects Peter focuses on:

Home Page


https://agiinnovations.com
http://optimal.org/voss.html

SHOW NOTES

China’s space program will launch a Mars mission in July, according to its current plans. This will include deploying an orbital probe to study the red planet, and a robotic, remotely-controlled rover for surface exploration. The U.S. has also been planning another robotic rover mission for Mars, and it’s set to take off this summer, too – peak time for an optimal transit from Earth to Mars thanks to their relative orbits around the Sun.

This will be the first rover mission to Mars for China’s space program, and is one of the many ways that it’s aiming to better compete with NASA’s space exploration efforts. NASA has flown four previous Mars rover missions, and its fifth, with an updated rover called ‘Perseverance,’ is set to take place this years with a goal of making a rendezvous with Mars sometime in February 2021.

NASA’s mission also includes an ambitious rock sample return plan, which will include the first powered spacecraft launch from the red planet to bring that back. The U.S. space agency is also sending the first atmospheric aerial vehicle to Mars on this mission, a helicopter drone that will be used for short flights to collect additional data from above the planet’s surface.