Toggle light / dark theme

“A wealth of information creates a poverty of attention,” said Andy McMurray, co-founder and CIO of Medal, an AI-based software company developing tools for health care, during an interview with Healthcare IT News.

This is especially true in the operating room, where surgery teams at the University of Iowa Hospital have reduced surgical site infection by 74% using DASH Analytics’ high-definition care platform (HDCP). This system observes data from the operation in real time and compares it to a patient’s history and its own infection models. Toward the end of the procedure, it automatically provides the surgeon with recommendations to reduce infection during wound closure. Furthermore, it notes whether the surgeon follows its suggestions or not and compares that to the outcome of the patient. This information is then used to both improve its infection model and improve the surgeon’s own performance in future surgeries.

Advances in AI build off of each other. One breakthrough opens the doors for more possibilities in the future, which in turn leads to even more breakthroughs at an exponential rate. Just as the Industrial Revolution automated back-breaking physical labor, the AI Revolution is poised to automate mind-numbing mental labor. Based on what we’ve seen in the last 10 years alone, we can expect to see this boom very soon.

Will we ever live on Mars?


Since the dawn of the Space Age, the planet Mars has been the focus of two ambitious projects. One is the search for life forms native to the planet; the other is human colonization.

For decades, Mars colonization advocates have been promising potential settlers that the time for leaving Earth is nearing. In fact, in terms of producing the actual space hardware—the capability to transport large numbers of passengers into space and the engines and life support to ferry them safely to Mars—we’re not much closer to a Mars colony than we were in 1972, when the last Apollo lunar mission returned to Earth, so don’t sell your house on Earth just yet. On the other hand, we’ve had one mind-blowing discovery after another about Mars as a result of unmanned exploration conducted over the last decades by NASA.

The evidence that the planet is home to microscopic lifeforms—something akin to Earth’s bacteria—has been accumulating slowly, but consistently. While few astrobiologists are ready say that, yes, there’s life there, until we have a photo of microorganisms swimming in the microscope field, that moment is really approaching. And we’ll probably get to it long before the first astronaut boots cast their prints into the Martian surface dust.

Ira Pastor, ideaXme life sciences ambassador and founder of Bioquark, interviews Dr. Robert Hariri, MD, PhD, surgeon, bio-medical scientist and highly successful serial entrepreneur in two technology sectors: bio-medicine and aerospace.

Dr. hariri utilizes biomedicine to aid human longevity:

Dr. Hariri is Chairman, Founder, and CEO, of Celularity, Inc., a clinical-stage cell therapeutics company developing allogeneic cellular therapies, engineered from the postpartum human placenta, in cancer immuno-therapy and functional regeneration, which recently got initial clearance from the U.S. Food and Drug Administration (FDA) to begin early-stage clinical trials on a potential treatment for Covid-19.

Dr. Hariri is also Co-Founder and Vice Chairman, of Human Longevity, Inc., a company merging extensive amounts of human genotype and phenotype data with machine learning, so that it can help develop new ways to fight diseases associated with aging.

Dr. Hariri served as Chairman, Founder, Chief Scientific Officer, and Chief Executive Officer of Celgene Cellular Therapeutics (acquired by Bristol Myers Squibb), one of the world’s largest human cellular therapeutics companies, where he pioneered the use of stem cells to treat a range of life threatening diseases and has made transformative contributions in the field of tissue engineering.

Recognition, Awards and Accolades:

Autonomous driving has been one of the fundamental pillars of Tesla’s push to electrify transport, and by all accounts, the California company is leading the pack in production deployments of autonomous driving technology.

The team of engineers at Tesla working on AI are some of the brightest minds in the space and continue to roll out new, innovative ways of not only processing and interpreting computer vision, but in developing new methods to train its AI. It’s the digital equivalent of building the machine that builds the machine, the virtual equivalent to taking a step up the chain from designing automobiles to designing the manufacturing machines, processes, and systems that build them.

Senior Director of AI at Tesla Andrej Karpathy recently took on the task of frontman for Tesla’s AI team for a day as he presented Tesla’s methods for training its AI at the Scaled ML Conference in February. Along the way, he shared a ton of new updates about the company’s approach to cracking the Full Self Driving nut once and for all.

Circa 2019 face_with_colon_three


Shoes will invariably wear out with enough use, but scientists might have found a way to delay the shopping trip for their replacements. A USC team has created a self-healing 3D-printed rubber that could be ideal for footwear, tires and even soft robotics. The effort involves 3D printing the material with photopolymerization (solidifying a resin with light) while introducing an oxidizer at just the right ratio to add self-healing properties without slowing down the solidifying process.

Fig. 1: Additive manufacturing of self-healing elastomers.

That strategy was unveiled in a directive on Wednesday by the Ministry of Industry and Information Technology (MIIT), which called on local authorities in 23 provinces, five autonomous regions and four municipalities to support the establishment of these new big data centres, which will help bolster efforts to upgrade the country’s manufacturing sector.


The Ministry of Industry and Information Technology has called on local authorities in 23 provinces, five autonomous regions and four municipalities to support the establishment of new ‘industrial big data’ centres, which would bolster the digital transformation of various industries.

Over the past several years, the increased application of unmanned air vehicles (UAVs) in a wide variety of industries has inspired both public and private research laboratories to not only continually improve this technology, but to also support the miniaturization of these devices. The development of both micro- and nano-UAVs is directly related to the ability of researchers to miniaturize the major components of these devices, some of which include micro-processors, sensors, batteries and all necessary wireless communication units that allow UAVs to function properly in any given settings.

People, bicycles, cars or road, sky, grass: Which pixels of an image represent distinct foreground persons or objects in front of a self-driving car, and which pixels represent background classes?

This task, known as panoptic segmentation, is a fundamental problem that has applications in numerous fields such as self-driving cars, robotics, augmented reality and even in biomedical image analysis.

At the Department of Computer Science at the University of Freiburg Dr. Abhinav Valada, Assistant Professor for Robot Learning and member of BrainLinks-BrainTools focuses on this research question. Valada and his team have developed the state-of-the-art “EfficientPS” artificial intelligence (AI) model that enables coherent recognition of visual scenes more quickly and effectively.

You might’ve seen people on the internet saying “it’s like my autocomplete gets me.” Indeed, Keyboard protection AI has come a long way so much so that it can almost complete your sentences. So, why shouldn’t developers get the benefit of auto-complete too?

For years, IDEs (Integrated Development Environment) have tried to make development quicker by predicting the next part of a developer’s code. Now, startups like Codota are using AI to help developers with code completion on any code editor.