Menu

Blog

Archive for the ‘robotics/AI’ category: Page 1768

Jan 16, 2020

AI Can Spot Low Glucose Levels Without Fingerprick Test

Posted by in categories: biotech/medical, engineering, robotics/AI, wearables

Researchers have developed a new Artificial Intelligence (AI)-based technique that can detect low-sugar levels from raw ECG signals via wearable sensors without any fingerprint test. Current methods to measure glucose requires needles and repeated fingerpicks over the day. Fingerpicks can often be painful, deterring patient compliance.

The new technique developed by researchers at University of Warwick works with an 82 per cent reliability, and could replace the need for invasive finger-prick testing with a needle, especially for kids who are afraid of those.

“Our innovation consisted in using AI for automatic detecting hypoglycaemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said Dr Leandro Pecchia from School of Engineering in a paper published in the Nature Springer journal Scientific Reports.

Jan 16, 2020

Beyond Genuine Stupidity – Making Smart Choices About Intelligent Infrastructure

Posted by in categories: futurism, robotics/AI

We’re at a fascinating point in the discourse around artificial intelligence (AI) and all things “smart”. At one level, we may be reaching “peak hype”, with breathless claims and counter claims about potential society impacts of disruptive technologies. Everywhere we look, there’s earnest discussion of AI and its exponentially advancing sisters – blockchain, sensors, the Internet of Things (IoT), big data, cloud computing, 3D / 4D printing, and hyperconnectivity. At another level, for many, it is worrying to hear politicians and business leaders talking with confidence about the transformative potential and societal benefits of these technologies in application ranging from smart homes and cities to intelligent energy and transport infrastructures.

Why the concern? Well, these same leaders seem helpless to deal with any kind of adverse weather incident, ground 70,000 passengers worldwide with no communication because someone flicked the wrong switch, and rush between Brexit crisis meetings while pretending they have a coherent strategy. Hence, there’s growing concern that we’ll see genuine stupidity in the choices made about how we deploy ever more powerful smart technologies across our infrastructure for society’s benefit. So, what intelligent choices could ensure that intelligent tools genuinely serve humanity’s best future interests.

Firstly, we are becoming a society of connected things with appalling connectivity. Literally every street lamp, road sign, car component, object we own, and item of clothing we wear could be carrying a sensor in the next five to ten years. With a trillion plus connected objects throwing off a continuous stream of information – we are talking about a shift from big to humungous data. The challenge is how we’ll transport that information? For Britain to realise its smart nation goals and attract the industries of tomorrow in the post-Brexit world, it seems imperative that we have broadband speeds that puts us amongst the five fastest nations on the planet. This doesn’t appear to be part of the current plan.

Continue reading “Beyond Genuine Stupidity – Making Smart Choices About Intelligent Infrastructure” »

Jan 16, 2020

Are we on the cusp of an ‘AI winter’?

Posted by in category: robotics/AI

Hype surrounding AI has peaked and troughed over the years as the abilities of the technology get overestimated and then re-evaluated.

The peaks are known as AI summers, and the troughs AI winters.

The 10s were arguably the hottest AI summer on record with tech giants repeatedly touting AI’s abilities.

Continue reading “Are we on the cusp of an ‘AI winter’?” »

Jan 16, 2020

AI-Designed ‘Living Robots’ Crawl, Heal Themselves

Posted by in categories: biotech/medical, robotics/AI, supercomputing

Biological organisms have certain useful attributes that synthetic robots do not, such as the abilities to heal, adapt to new situations, and reproduce. Yet molding biological tissues into robots or tools has been exceptionally difficult to do: Experimental techniques, such as altering a genome to make a microbe perform a specific task, are hard to control and not scalable.

Now, a team of scientists at the University of Vermont and Tufts University in Massachusetts has used a supercomputer to design novel lifeforms with specific functions, then built those organisms out of frog cells.

Continue reading “AI-Designed ‘Living Robots’ Crawl, Heal Themselves” »

Jan 16, 2020

Software detects backdoor attacks on facial recognition

Posted by in categories: cybercrime/malcode, engineering, military, robotics/AI

As the U.S. Army increasingly uses facial and object recognition to train artificial intelligent systems to identify threats, the need to protect its systems from cyberattacks becomes essential.

An Army project conducted by researchers at Duke University and led by electrical and computer engineering faculty members Dr. Helen Li and Dr. Yiran Chen, made significant progress toward mitigating these types of attacks. Two members of the Duke team, Yukun Yang and Ximing Qiao, recently took first prize in the Defense category of the CSAW ‘19 HackML competition.

“Object recognition is a key component of future intelligent systems, and the Army must safeguard these systems from cyberattacks,” said MaryAnne Fields, program manager for intelligent systems at the Army Research Office. “This work will lay the foundations for recognizing and mitigating backdoor attacks in which the data used to train the system is subtly altered to give incorrect answers. Safeguarding object recognition systems will ensure that future Soldiers will have confidence in the intelligent systems they use.”

Jan 15, 2020

Hidden Computational Power Found in the Arms of Neurons

Posted by in categories: mathematics, neuroscience, robotics/AI

The information-processing capabilities of the brain are often reported to reside in the trillions of connections that wire its neurons together. But over the past few decades, mounting research has quietly shifted some of the attention to individual neurons, which seem to shoulder much more computational responsibility than once seemed imaginable.

The latest in a long line of evidence comes from scientists’ discovery of a new type of electrical signal in the upper layers of the human cortex. Laboratory and modeling studies have already shown that tiny compartments in the dendritic arms of cortical neurons can each perform complicated operations in mathematical logic. But now it seems that individual dendritic compartments can also perform a particular computation — “exclusive OR” — that mathematical theorists had previously categorized as unsolvable by single-neuron systems.

“I believe that we’re just scratching the surface of what these neurons are really doing,” said Albert Gidon, a postdoctoral fellow at Humboldt University of Berlin and the first author of the paper that presented these findings in Science earlier this month.

Continue reading “Hidden Computational Power Found in the Arms of Neurons” »

Jan 15, 2020

Ferroelectric Semiconductors Could Mix Memory and Logic

Posted by in categories: materials, robotics/AI

FSJs (Ferroelectric Semiconductor Junction) in neuromorphic chips.


Engineers at Purdue University and at Georgia Tech have constructed the first devices from a new kind of two-dimensional material that combines memory-retaining properties and semiconductor properties. The engineers used a newly discovered ferroelectric semiconductor, alpha indium selenide, in two applications: as the basis of a type of transistor that stores memory as the amount of amplification it produces; and in a two-terminal device that could act as a component in future brain-inspired computers. The latter device was unveiled last month at the IEEE International Electron Devices Meeting in San Francisco.

Ferroelectric materials become polarized in an electric field and retain that polarization even after the field has been removed. Ferroelectric RAM cells in commercial memory chips use the former ability to store data in a capacitor-like structure. Recently, researchers have been trying to coax more tricks from these ferroelectric materials by bringing them into the transistor structure itself or by building other types of devices from them.

Continue reading “Ferroelectric Semiconductors Could Mix Memory and Logic” »

Jan 15, 2020

Australian man becomes first robotic kidney transplant recipient in the world

Posted by in categories: biotech/medical, robotics/AI

Tim Sawley’s wife Talitha donated the kidney to him in a medical first.

Jan 15, 2020

Scientists Discovered ‘Mini-Computers’ in Human Neurons—and That’s Great News for AI

Posted by in category: robotics/AI

The neurons in our cortex, the outermost “crust” of our brain, seem to have uniquely evolved to sustain complex computations in their input cables.

Jan 15, 2020

Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs

Posted by in categories: biotech/medical, robotics/AI

A lack of tools to precisely control gene expression has limited our ability to evaluate relationships between expression levels and phenotypes. Here, we describe an approach to titrate expression of human genes using CRISPR interference and series of single-guide RNAs (sgRNAs) with systematically modulated activities. We used large-scale measurements across multiple cell models to characterize activities of sgRNAs containing mismatches to their target sites and derived rules governing mismatched sgRNA activity using deep learning. These rules enabled us to synthesize a compact sgRNA library to titrate expression of ~2,400 genes essential for robust cell growth and to construct an in silico sgRNA library spanning the human genome. Staging cells along a continuum of gene expression levels combined with single-cell RNA-seq readout revealed sharp transitions in cellular behaviors at gene-specific expression thresholds. Our work provides a general tool to control gene expression, with applications ranging from tuning biochemical pathways to identifying suppressors for diseases of dysregulated gene expression.