Toggle light / dark theme

How artificial intelligence can make our food safer

Food recalls could be a thing of the past if artificial intelligence (AI) is utilized in food production, according to a recent study from UBC and the University of Guelph.

The average cost of a food recall due to bacterial or microbial contamination, like E. coli, is US$10 million according to study co-author Dr. Rickey Yada, a professor and the dean of the UBC faculty of land and .

We spoke with Dr. Yada about how AI can help optimize the current systems used in the industry, and how it can help make our safer.

Starship and Booster Engine Testing Double Header | SpaceX Boca Chica

Booster 7 and Ship 24 both conducted two spin prime tests, Ship 25 was welded in the High Bay, and the Chopsticks were raised.

Video and Pictures from Mary (@BocaChicaGal), Nic (@NicAnsuini), and the NSF Robots.
Edited by Patrick Colquhoun(@Patrick_Colqu).

All content copyright to NSF. Not to be used elsewhere without explicit permission from NSF.

Click “Join” for access to early fast turnaround clips, exclusive discord access with the NSF team, etc — to support the channel.

Rolling Updates and Discussion: https://forum.nasaspaceflight.com/index.php?board=72.

Articles: https://www.nasaspaceflight.com/?s=Starship.

Soap molecule could help make alternative LED tech commercially viable

Adding a molecule normally used in detergent to an infrared LED could make devices that are easier to manufacture, require less energy and display richer colours than existing ones.

Solar cells and LEDs made from perovskite, a titanium and calcium crystal, have long held promise as being more efficient and easier to produce than commonly used silicon-based devices, but making them both stable and efficient enough to rival silicon’s commercial success has proved difficult.

What gives humans the advantage over our incoming robot masters? Junaid Mubeen at New Scientist Live this October.

Artificial finger able to identify surface material with 90% accuracy

A team of researchers at the Chinese Academy of Sciences, has developed an artificial finger that was able to identify certain surface materials with 90% accuracy. In their paper published in the journal Science Advances, the group describes how they used triboelectric sensors to give their test finger an ability to gain a sense of touch.

Prior research has led to the development of robotic fingers that have the ability to recognize certain attributes of certain surfaces, such as or temperature—the team with this new effort, have taken such efforts further by adding the ability to identify a material that is being touched.

The finger was created by applying small square sensors to the tip of a finger-shaped object. Each of the squares was made of a different kind of plastic polymer, each chosen because of their unique electrical properties. When such sensors are moved close to an object, such as a , electrons from the sensors interact with the materials in unique ways.

/* */