Toggle light / dark theme

Automation Anywhere expands collaboration with ICT Academy to impart RPA skills

US-based intelligent automation provider, Automation Anywhere has expanded its collaboration with ICT Academy to upskill additional thousands more students from engineering and non-engineering institutes in Robotic Process Automation (RPA).

The partnership aims to complete more than 500,000 RPA-related courses over the next two years. More than 300,000 certifications have already been issued under the program, the company said.

Through this learning initiative students will access content from Automation Anywhere University (AAU). The program provides role-based learning trails, courses and certifications based on Automation 360 — the company’s AI-powered, cloud native intelligent automation platform.

Artificial intelligence model finds potential drug molecules a thousand times faster

The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like COVID-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 thousand million, or 108, stars.

In a paper that will be presented at the International Conference on Machine Learning (ICML), MIT researchers developed a geometric deep-learning model called EquiBind that is 1,200 times faster than one of the fastest existing computational molecular docking models, QuickVina2-W, in successfully binding drug-like molecules to proteins. EquiBind is based on its predecessor, EquiDock, which specializes in binding two proteins using a technique developed by the late Octavian-Eugen Ganea, a recent MIT Computer Science and Artificial Intelligence Laboratory and Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic) postdoc, who also co-authored the EquiBind paper.

Before can even take place, drug researchers must find promising drug-like molecules that can bind or “dock” properly onto certain protein targets in a process known as . After successfully docking to the protein, the binding drug, also known as the ligand, can stop a protein from functioning. If this happens to an essential protein of a bacterium, it can kill the bacterium, conferring protection to the human body.

Nvidia rolls out a new platform to enable a hybrid quantum classical computing

The potential of quantum computing can in no way be undermined today as it solves some of the most obstinate challenges from bringing down global warming to dramatically bringing down drug discovery time and much more. And with this, several companies are in a spree to bring up quantum computing capabilities.

Nvidia has announced a unified computing platform that will bring in an open environment across quantum processors and classical computers. The company said that the platform aims at speeding enhanced quantum research and development across Artificial Intelligence (AI), High Performance Computing (HPC), health, finance and other disciplines.

The company claims that Nvidia Quantum Optimized Device Architecture or QODA is a first-of-its-kind platform for hybrid quantum-classical computers and aims to make quantum computing more accessible by creating a comprehensive hybrid quantum-classical programming model.

Scientists Have Created an AI That Can Think Like a Human Baby

Artificial intelligence (AI) systems are already far superior to humans in some tasks, such as playing Go or processing enormous amounts of data, yet even just a few months after we are born, AI is still far behind us in many other areas.

For instance, even very young kids instinctively understand that an object shouldn’t disappear and then reappearance somewhere else. Babies react with amazement when they witness such a magic trick.

Building Neural Networks With TensorFlow.NET

TensorFlow.NET is a library that provides a. NET Standard binding for TensorFlow. It allows. NET developers to design, train and implement machine learning algorithms, including neural networks. Tensorflow. NET also allows us to leverage various machine learning models and access the programming resources offered by TensorFlow.

TensorFlow

TensorFlow is an open-source framework developed by Google scientists and engineers for numerical computing. It is composed by a set of tools for designing, training and fine-tuning neural networks. TensorFlow’s flexible architecture makes it possible to deploy calculations on one or more processors (CPUs) or graphics cards (GPUs) on a personal computer, server, without re-writing code.

Error-Correcting Surface Codes Get Experimental Vetting

Two independent groups have experimentally demonstrated surface-code quantum error correction—an approach for remedying errors in quantum computations.


The small robotic crab can walk, bend, twist, turn and jump The smallest-ever remote-controlled walking robot has been created by Northwestern University engineers, and it takes the shape of a tiny, cute peekytoe crab. The tiny crabs, which are about half a millimeter wide, can bend, twist, craw.

Smaller Than a Flea — The Smallest Remote-Controlled Walking Robot Ever

The tiny crabs, which are about half a millimeter wide, can bend, twist, crawl, walk, turn, and even leap. Additionally, the scientists created millimeter-sized robots that resemble inchworms, crickets, and beetles. The study is experimental at this time, but the researchers think their technique might move the field closer to developing tiny robots that can carry out useful tasks in small, cramped areas.

The study was recently published in the journal Science Robotics. The same team also unveiled a winged microprocessor in September of last year; it was the tiniest flying object ever created by humans (published on the cover of Nature).

“Robotics is an exciting field of research, and the development of microscale robots is a fun topic for academic exploration,” said John A. Rogers, who led the experimental work. “You might imagine micro-robots as agents to repair or assemble small structures or machines in industry or as surgical assistants to clear clogged arteries, to stop internal bleeding or to eliminate cancerous tumors — all in minimally invasive procedures.”