Toggle light / dark theme

Discover How AI is Transforming Quantum Computing

Quantum technologies have had a meteoric rise and become a key area of prioritization for governments, academics, and businesses. Government funding commitments total almost $40 billion, while private investments since 2021 total nearly $8 billion. The US agency, National Institute of Standards and Technology, released this year three new post-quantum security standards, which governments classify as ‘critical resources’ for the economy and national defense. Meanwhile, users of quantum technologies experiment with them, from industry applications in drug development and materials science to energy grid optimization and logistics efficiency.

Yet, besides a few areas, such as quantum sensing, practical and impactful quantum technologies haven’t matured for widespread use. However, when combined with classical machine learning, practical use cases emerge.

This article delves into the impact and potential of artificial intelligence and quantum technologies with QAI Ventures, a financial partner and ecosystem builder in quantum technologies and AI, as a potential collaborator for startups to deliver investment, resources, global networks, and tailored accelerator and incubator programs.


This article covers AI and quantum technologies with QAI Ventures, a financial partner and ecosystem builder in emerging technologies.

Small But Mighty: How is Nanotechnology Powering AI?

The limitations of conventional semiconductor technology have become increasingly apparent as AI applications require exponentially larger computational resources. Once the engines of rapid technological advances, silicon-based transistors are now encountering fundamental physical constraints at the nanoscale that inhibit further scaling and performance enhancement. Moore’s law, which predicted the doubling of transistors on a chip every two years, is running out of space.

On top of that, the breakdown of Dennard scaling, which once enabled simultaneous improvements in speed, power efficiency, and density, has further intensified the need for alternative materials and device architectures capable of sustaining AI-driven workloads.

This is where nanotechnology comes in. Working on a nanoscale offers a pathway to overcome the constraints of conventional tech, enabling the precise manipulation of materials at the atomic and molecular levels, typically within the one to 100 nanometer range.

At this minute scale, materials exhibit unique physical, chemical, and electrical characteristics. These small-scale properties can enable faster operation, lower energy consumption, and can be used to deliver complex functionalities within a single nanoscale architecture.


Discover how nanotechnology is advancing AI with energy-efficient chips, in-memory computing, neuromorphic hardware, and nanoscale data storage solutions.

AI model uses glucose spikes to reveal hidden diabetes risk before symptoms appear

Spread the love 19 11 To diagnose either type 2 diabetes or pre-diabetes, clinicians typically rely on a lab value known as HbA1c. This test captures a person’s average blood glucose levels over the previous few months. But HbA1c cannot predict who is at highest risk of progressing from healthy to prediabetic, or from prediabetic to full-blown diabetes.

Astronomers discover new type of supernova triggered by black hole-star interaction

Astronomers have discovered what may be a massive star exploding while trying to swallow a black hole companion, offering an explanation for one of the strangest stellar explosions ever seen.

The discovery was made by a team led by the Center for Astrophysics | Harvard & Smithsonian (CfA) and the Massachusetts Institute of Technology (MIT) as part of the Young Supernova Experiment. The results are published in The Astrophysical Journal.

The blast, named SN 2023zkd, was first discovered in July 2023 by the Zwicky Transient Facility. A new AI algorithm designed to scan for unusual explosions in real time first detected the , and that early alert allowed astronomers to begin follow-up observations immediately—an essential step in capturing the full story of the explosion. By the time the explosion was over, it had been observed by a large set of telescopes, both on the ground and from space.

/* */