Toggle light / dark theme

AI-powered predictions of the three-dimensional structures of nearly all cataloged proteins known to science have been made by DeepMind and EMBL’s European Bioinformatics Institute (EMBL-EBI). The catalog is freely and openly available to the scientific community, via the AlphaFold Protein Structure Database.

The two organizations hope the expanded database will continue to increase our understanding of biology, helping countless more scientists in their work as they strive to tackle global challenges.

This major milestone marks the database being expanded by approximately 200 times. It has grown from nearly 1 million protein structures to over 200 million, and now covers almost every organism on Earth that has had its genome sequenced. Predicted structures for a wide range of species, including plants, bacteria, animals, and other organisms are now included in the expanded database. This opens up new avenues of research across the life sciences that will have an impact on global challenges, including sustainability, food insecurity, and neglected diseases.

For now, the acrylic table is under construction and open only to the stuffed mouse, originally a cat toy, used to help set up the cameras. The toy squeaks when Kennedy presses it. “Usually, you do a surgery to remove the squeaker” before using them to set up experiments, says Kennedy, assistant professor of neuroscience at Northwestern University in Chicago, Illinois.

The playful squeak is a startling sound in a lab that is otherwise defined by the quiet of computational modeling. Among her projects, Kennedy is expanding her work with an artificial-intelligence-driven tool called the Mouse Action Recognition System (MARS) that can automatically classify mouse social behaviors. She also uses her modeling work to study how different brain areas and cell types interact with one another, and to connect neural activity with behaviors to learn how the brain integrates sensory information. In her office on the fifth floor of Northwestern’s Ward Building in downtown Chicago, most of this work happens on computers with data, code and graphs. Quiet also prevails in a room down the hall, where Kennedy’s small group of postdoctoral researchers and technicians sit at workstations in a lab that she launched less than a year and a half ago.

Kennedy’s ability to talk about abstract concepts, with a little stuffed animal as a prop, sets her apart, her colleagues say. She is a rare theoretical neuroscientist who can translate her mathematical work into real-world experiments. “That is her gift,” says Larry Abbott, a theoretical neuroscientist at Columbia University who was Kennedy’s graduate school advisor. “She’s good at the technical stuff, but if you can’t make that reach across to the data and the experiments, a person is not going to be that effective. She’s really just great at that — finding the right mathematics to apply to the particular problem that she’s looking at.”

By Natasha Vita-More.

Has the technological singularity in 2019 changed since the late 1990s?

As a theoretical concept it has become more recognized. As a potential threat, it is significantly written about and talked about. Because the field of narrow AI is growing and machine learning has found a place in academics and entrepreneurs are investing in the growth of AI, tech leaders have come to the table and voiced their concerns, especially Bill Gates, Elon Musk, and the late Stephen Hawking. The concept of existential risk has taken a central position within the discussions about AI and machine ethicists are prepping their arguments toward a consensus that near-future robots will force us to rethink the exponential advances in the fields of robotics and computer science. Here it is crucial for those leaders in philosophy and ethics to address the concept of what an ethical machine means and the true goal of machine ethics.

✅ Subscribe: https://bit.ly/3slupxs.
Quantum AI is the use of quantum computing for computation of machine learning algorithms. Thanks to computational advantages of quantum computing, quantum AI can help achieve results that are not possible to achieve with classical computers.

Quantum data: Quantum data can be considered as data packets contained in qubits for computerization. However, observing and storing quantum data is challenging because of the features that make it valuable which are superposition and entanglement. In addition, quantum data is noisy, it is necessary to apply a machine learning in the stage of analyzing and interpreting these data correctly.

Quantum algorithms: An algorithm is a sequence of steps that leads to the solution of a problem. In order to execute these steps on a device, one must use specific instruction sets that the device is designed to do so.

Quantum computing introduces different instruction sets that are based on a completely different idea of execution when compared with classical computing. The aim of quantum algorithms is to use quantum effects like superposition and entanglement to get the solution faster.

At the beginning of the COVID-19 pandemic, car manufacturing companies such as Ford quickly shifted their production focus from automobiles to masks and ventilators.

To make this switch possible, these companies relied on people working on an assembly line. It would have been too challenging for a robot to make this transition because robots are tied to their usual tasks.

Theoretically, a robot could pick up almost anything if its grippers could be swapped out for each task. To keep costs down, these grippers could be passive, meaning grippers pick up objects without changing shape, similar to how the tongs on a forklift work.

A research group from the Graduate School of Informatics, Nagoya University, has taken a big step towards creating a neural network with metamemory through a computer-based evolution experiment. Their paper appears in Scientific Reports.

In recent years, there has been rapid progress in designing technology using neural networks that imitate brain circuits. One goal of this field of research is understanding the evolution of metamemory to use it to create artificial intelligence with a human-like mind.

Metamemory is the process by which we ask ourselves whether we remember what we had for dinner yesterday and then use that to decide whether to eat something different tonight. While this may seem like a simple question, answering it involves a complex process. Metamemory is important because it involves a person having knowledge of their own memory capabilities and adjusting their behavior accordingly.

The lab will work in areas such as quantum computing, explainable artificial intelligence (AI) that presents data in a manner that can be understood by humans, and Metaverse, a virtual world where people can connect through their digital avatars.

Tech Mahindra already has 10 Makers Lab across the world and the new unit at Mahindra University will be the 11th facility globally and second in Hyderabad, said the company.

“With the launch of Makers Lab, we will provide many talented and skilled individuals, with the opportunity to progress for a greater cause,” said CP Gurnani, MD & CEO, Tech Mahindra.