Researchers at UNIST have developed an innovative AI technology capable of reconstructing highly detailed three-dimensional (3D) models of companion animals from a single photograph, enabling realistic animations. This breakthrough allows users to experience lifelike digital avatars of their companion animals in virtual reality (VR), augmented reality (AR), and metaverse environments.
Category: robotics/AI – Page 118
Generative AI models build new antibiotics starting from a single atom
Researchers have tapped into the power of generative artificial intelligence to aid them in the fight against one of humanity’s most pernicious foes: antibiotic-resistant bacteria. | Researchers have tapped into the power of generative artificial intelligence to aid them in the fight against one of humanity’s most pernicious foes: antibiotic-resistant bacteria. Using a model trained on a library of about 40,000 chemicals, scientists were able to build never-before-seen antibiotics that killed two of the most notorious multidrug-resistant bacteria on earth.
Researchers send a wireless curveball to deliver massive amounts of data
Ultrahigh frequency bandwidths are easily blocked by objects, so users can lose transmissions walking between rooms or even passing a bookcase. Now, researchers at Princeton engineering have developed a machine-learning system that could allow ultrahigh frequency transmissions to dodge those obstacles.
Self-powered photodetector achieves 20-fold sensitivity boost using novel device structure
Silicon semiconductors used in existing photodetectors have low light responsivity, and the two-dimensional semiconductor MoS₂ (molybdenum disulfide) is so thin that doping processes to control its electrical properties are difficult, limiting the realization of high-performance photodetectors.
A KAIST research team has overcome this technical limitation and developed the world’s highest-performing self-powered photodetector, which operates without electricity in environments with a light source. This paves the way for precise sensing without batteries in wearable devices, biosignal monitoring, IoT devices, autonomous vehicles, and robots, as long as a light source is present.
Professor Kayoung Lee’s research team from the School of Electrical Engineering developed the self-powered photodetector, which demonstrated a sensitivity up to 20 times higher than existing products, marking the highest performance level among comparable technologies reported to date. The work is published in the journal Advanced Functional Materials.