Menu

Blog

Archive for the ‘robotics/AI’ category: Page 1049

Jul 21, 2021

Nvidia releases TensorRT 8 for faster AI inference

Posted by in categories: mathematics, robotics/AI

Nvidia today announced the release of TensorRT 8, the latest version of its software development kit (SDK) designed for AI and machine learning inference. Built for deploying AI models that can power search engines, ad recommendations, chatbots, and more, Nvidia claims that TensorRT 8 cuts inference time in half for language queries compared with the previous release of TensorRT.

Models are growing increasingly complex, and demand is on the rise for real-time deep learning applications. According to a recent O’Reilly survey, 86.7% of organizations are now considering, evaluating, or putting into production AI products. And Deloitte reports that 53% of enterprises adopting AI spent more than $20 million in 2019 and 2020 on technology and talent.

TensorRT essentially dials a model’s mathematical coordinates to a balance of the smallest model size with the highest accuracy for the system it’ll run on. Nvidia claims that TensorRT-based apps perform up to 40 times faster than CPU-only platforms during inference, and that TensorRT 8-specific optimizations allow BERT-Large — one of the most popular Transformer-based models — to run in 1.2 milliseconds.

Jul 20, 2021

Untether AI nabs $125M for AI acceleration chips

Posted by in category: robotics/AI

Untether AI, a startup developing custom-built chips for AI inferencing workloads, today announced it has raised $125 million from Tracker Capital Management and Intel Capital. The round, which was oversubscribed and included participation from Canada Pension Plan Investment Board and Radical Ventures, will be used to support customer expansion.

Increased use of AI — along with the technology’s hardware requirements — poses a challenge for traditional datacenter compute architectures. Untether is among the companies proposing at-memory or near-memory computation as a solution. Essentially, this type of hardware builds memory and logic into an integrated circuit package. In a “2.5D” near-memory compute architecture, processor dies are stacked atop an interposer that links the components and the board, incorporating high-speed memory to bolster chip bandwidth.

Founded in 2018 by CTO Martin Snelgrove, Darrick Wiebe, and Raymond Chik, Untether says it continues to make progress toward mass-producing its RunA1200 chip, which boasts efficiency with computational robustness. Snelgrove and Wiebe claim that data in their architecture moves up to 1000 times faster than is typical, which would be a boon for machine learning, where datasets are frequently dozens or hundreds of gigabytes in size.

Jul 20, 2021

Researchers from IBM, MIT and Harvard Announced The Release Of DARPA “Common Sense AI” Dataset Along With Two Machine Learning Models At ICML 2021

Posted by in category: robotics/AI

Building machines that can make decisions based on common sense is no easy feat. A machine must be able to do more than merely find patterns in data; it also needs a way of interpreting the intentions and beliefs behind people’s choices.

At the 2021 International Conference on Machine Learning (ICML), Researchers from IBM, MIT, and Harvard University have come together to release a DARPA “Common Sense AI” dataset for benchmarking AI intuition. They are also releasing two machine learning models that represent different approaches to the problem that relies on testing techniques psychologists use to study infants’ behavior to accelerate the development of AI exhibiting common sense.

This research work is the first of its kind to use psychology to create more fluid and better AI systems. It aims to develop machine commonsense that makes sense because it has innate human qualities – such as intuition, common knowledge, or understanding of social cues.

Jul 20, 2021

New Protein Folding AI Just Made a ‘Once In a Generation’ Advance in Biology

Posted by in categories: biological, information science, mapping, particle physics, robotics/AI

The tool next examines how one protein’s amino acids interact with another within the same protein, for example, by examining the distance between two distant building blocks. It’s like looking at your hands and feet fully stretched out, versus in a backbend measuring the distance between those extremities as you “fold” into a yoga pose.

Finally, the third track looks at 3D coordinates of each atom that makes up a protein building block—kind of like mapping the studs on a Lego block—to compile the final 3D structure. The network then bounces back and forth between these tracks, so that one output can update another track.

The end results came close to those of DeepMind’s tool, AlphaFold2, which matched the gold standard of structures obtained from experiments. Although RoseTTAFold wasn’t as accurate as AlphaFold2, it seemingly required much less time and energy. For a simple protein, the algorithm was able to solve the structure using a gaming computer in about 10 minutes.

Jul 20, 2021

DeepMind Introduces It’s Supermodel AI ‘Perceiver’: A Neural Network Model That Could Process All Types Of Input

Posted by in category: robotics/AI

Artificial intelligence, machine learning, data science.

Jul 20, 2021

Transforming Brain Waves into Words with AI

Posted by in categories: biotech/medical, robotics/AI

New research out of the University of California, San Francisco has given a paralyzed man the ability to communicate by translating his brain signals into computer generated writing. The study, published in The New England Journal of Medicine, marks a significant milestone toward restoring communication for people who have lost the ability to speak.

“To our knowledge, this is the first successful demonstration of direct decoding of full words from the brain activity of someone who is paralyzed and cannot speak,” senior author and the Joan and Sanford Weill Chair of Neurological Surgery at UCSF, Edward Chang said in a press release. “It shows strong promise to restore communication by tapping into the brain’s natural speech machinery.”

Some with speech limitations use assistive devices–such as touchscreens, keyboards, or speech-generating computers to communicate. However, every year thousands lose their speech ability from paralysis or brain damage, leaving them unable to use assistive technologies.

Jul 19, 2021

A 3D-printed soft robotic hand that can play Nintendo

Posted by in categories: 3D printing, biotech/medical, cyborgs, robotics/AI

A team of researchers from the University of Maryland has 3D printed a soft robotic hand that is agile enough to play Nintendo’s Super Mario Bros. — and win!

The feat, highlighted on the front cover of the latest issue of Science Advances, demonstrates a promising innovation in the field of soft robotics, which centers on creating new types of flexible, that are powered using water or air rather than electricity. The inherent safety and adaptability of soft robots has sparked interest in their use for applications like prosthetics and biomedical devices. Unfortunately, controlling the fluids that make these soft robots bend and move has been especially difficult—until now.

The key breakthrough by the team, led by University of Maryland assistant professor of mechanical engineering Ryan D. Sochol, was the ability to 3D print fully assembled soft robots with integrated fluidic circuits in a single step.

Jul 19, 2021

IBM’s new AI tool figures out exactly how much carbon each tree can capture

Posted by in category: robotics/AI

Using lidar to calculate the size and species of each tree gives a more exact picture of how big an offset trees are providing.

Jul 18, 2021

Can Science Cure Death? It Sure Looks Like It

Posted by in categories: biotech/medical, chemistry, genetics, mobile phones, robotics/AI, science

Nick Saraev is 25 years old, far too young, it would seem, to be thinking about death. And yet, since he turned 21, he has taken steps to prevent the infirmities of old age. Every day, he takes 2000 mg of fish oil and 4000 IU of vitamin D to help prevent heart disease and other ailments. He steams or pressure-cooks most of his meals because, he says, charring meats creates chemicals that may increase the risk of cancer. And in the winter, he keeps the humidity of his home at 35 percent, because dry air chaps his skin and makes him cough, both of which he considers manifestations of chronic inflammation, which may be bad for longevity.

Based on the life expectancies of young men in North America, Saraev, a freelance software engineer based near Vancouver, believes he has about 55 years before he really has to think about aging. Given the exponential advances in microprocessors and smartphones in his lifetime, he insists the biotech industry will figure out a solution by then. For this reason, Saraev, like any number of young, optimistic, tech-associated men, believes that if he takes the correct preventative steps now, he might well live forever. Saraev’s plan is to keep his body in good enough shape to hit “Longevity Escape Velocity,” a term coined by English gerontologist Aubrey de Grey to denote slowing down your aging enough to reach each new medical advance as it arrives. If you delay your death by 10 years, for example, that’s 10 more years scientists have to come up with a drug, computer program, or robot assist that can make you live even longer. Keep up this game of reverse leapfrog, and eventually death can’t catch you. The term is reminiscent of “planetary escape velocity,” the speed an object needs to move in order to break free of gravity.

The science required to break free of death, unfortunately, is still at ground level. According to Nir Barzilai, M.D., director of the Institute for Aging Research at Albert Einstein College of Medicine in New York City, scientists currently understand aging as a function of seven to nine biological hallmarks, factors that change as we grow older and seem to have an anti-aging effect when reversed. You can imagine these as knobs you can turn up or down to increase or decrease the likelihood of illness and frailty. Some of these you may have heard of, including how well cells remove waste, called proteostasis; how well cells create energy, or mitochondrial function; how well cells implement their genetic instructions, or epigenetics; and how well cells maintain their DNA’s integrity, called DNA repair or telomere erosion.

Jul 18, 2021

Advanced New Artificial Intelligence Software Can Compute Protein Structures in 10 Minutes

Posted by in categories: biotech/medical, robotics/AI

Unlike DeepMind, the UW Medicine team’s method, which they dubbed RoseTTAFold, is freely available. Scientists from around the world are now using it to build protein models to accelerate their own research. Since July, the program has been downloaded from GitHub by over 140 independent research teams.


Accurate protein structure prediction now accessible to all.

Scientists have waited months for access to highly accurate protein structure prediction since DeepMind presented remarkable progress in this area at the 2020 Critical Assessment of Structure Prediction, or CASP14, conference. The wait is now over.

Continue reading “Advanced New Artificial Intelligence Software Can Compute Protein Structures in 10 Minutes” »