Toggle light / dark theme

‘String breaking’ observed in 2D quantum simulator

An international team led by Innsbruck quantum physicist Peter Zoller, together with the US company QuEra Computing, has directly observed a gauge field theory similar to models from particle physics in a two-dimensional analog quantum simulator for the first time. The study, published in Nature, opens up new possibilities for research into fundamental physical phenomena.

String breaking occurs when the string between two strongly bound particles, such as a quark-antiquark pair, breaks and new particles are created. This concept is central to understanding the that occur in (QCD), the theory that describes the binding of quarks in protons and neutrons.

String breaking is extremely difficult to observe experimentally, as it only occurs in nature under extreme conditions. The recent work by scientists from the Universities of Innsbruck and Harvard, the ÖAW-Institute for Quantum Optics and Quantum Information (IQOQI) and the quantum computer company QuEra shows for the first time how this phenomenon can be reproduced in an analog quantum .

Magnetism in new exotic material opens the way for robust quantum computers

The entry of quantum computers into society is currently hindered by their sensitivity to disturbances in the environment. Researchers from Chalmers University of Technology in Sweden, and Aalto University and the University of Helsinki in Finland, now present a new type of exotic quantum material, and a method that uses magnetism to create stability.

This breakthrough can make quantum computers significantly more resilient—paving the way for them to be robust enough to tackle quantum calculations in practice.

The paper, “Topological Zero Modes and Correlation Pumping in an Engineered Kondo Lattice,” is published in Physical Review Letters.

How bigger molecules can help quantum charge flow last longer

A team at EPFL and the University of Arizona has discovered that making molecules bigger and more flexible can actually extend the life of quantum charge flow, a finding that could help shape the future of quantum technologies and chemical control. Their study is published in the Proceedings of the National Academy of Sciences.

In the emerging field of attochemistry, scientists use to trigger and steer electron motion inside . This degree of precision could one day let us design chemicals on demand. Attochemistry could also enable real-time control over how break or form, lead to the creation of highly targeted drugs, develop new materials with tailor-made properties, and improve technologies like solar energy harvesting and quantum computing.

But the big roadblock is decoherence: Electrons lose their quantum “sync” within a few femtoseconds (a millionth of a billionth of a second), especially when the molecule is large and floppy. Researchers have tried different methods to sustain coherence—using heavy atoms, freezing temperatures etc. Because quantum coherence vanishes at macroscopic scales, most approaches to sustaining coherence operate on the same assumption: larger and more flexible molecules were assumed to lose coherence more rapidly. What if that assumption is wrong?

A 1960s idea inspires researchers to study hitherto inaccessible quantum states

Researchers from the Niels Bohr Institute, University of Copenhagen, have created a novel pathway into the study of the elusive quantum states in superconducting vortices. The existence of these was flaunted in the 1960s, but has remained very difficult to verify directly because those states are squeezed into energy scales smaller than one can typically resolve in experiments.

The result was made possible by a combination of ingenuity and the expanding research in created in the labs at the Niels Bohr Institute. It is now published in Physical Review Letters.

Gravitational Waves and Higgs field from Alena Tensor

Alena Tensor is a recently discovered class of energy-momentum tensors that proposes a general equivalence of the curved path and geodesic for analyzed spacetimes which allows the analysis of physical systems in curvilinear, classical and quantum descriptions. In this paper it is shown that Alena Tensor is related to the Killing tensor K and describes the class of GR solutions G + Λ g = 2 Λ K. In this picture, it is not matter that imposes curvature, but rather the geometric symmetries, encoded in the Killing tensor, determine the way spacetime curves and how matter can be distributed in it. It was also shown, that Alena Tensor gives decomposition of energy-momentum tensor of the electromagnetic field using two null-vectors and in natural way forces the Higgs field to appear, indicating the reason for the symmetry breaking.

New quantum battery design promises nanoscale energy storage

In the coming years, batteries so tiny yet powerful could revolutionize everything from smartphones to supercomputers.

Energy storage is about to take a massive leap forward, with the new concept of “topological quantum battery” at the forefront.

A theoretical study by researchers at the RIKEN Center for Quantum Computing and Huazhong University of Science and Technology has shown how to efficiently design a quantum battery.

The Empty Atom Myth: Why “Nothing” Isn’t Empty at All

Go to https://groundnews.com/physics to stay fully informed about physics, other sciences, and more. Subscribe through my link to get 40% off the unlimited vantage plan, the same one I use, which breaks down to just $5/month with my discount.

You can help support this channel via the Physics Explained Patreon account: / physicsexplained.

We’ve all heard the claim: atoms are mostly empty space. That if you zoomed in far enough, you’d find 99.9999999999999% of an atom is just… nothing. But this idea, while popular, is deeply misleading.

In this video, we dive into the quantum reality behind that empty space — and reveal what truly fills the “void” inside atoms. From the discovery of the nucleus to the rise of quantum field theory, we’ll explore how jittering fields, zero-point energy, and vacuum fluctuations reshape our understanding of what “nothing” really is.

Along the way, you’ll learn:

Why Rutherford’s model gave birth to the “empty atom” idea.

Memory matters for quantum atomic motion on metals

In a variety of technological applications related to chemical energy generation and storage, atoms and molecules diffuse and react on metallic surfaces. Being able to simulate and predict this motion is crucial to understanding material degradation, chemical selectivity, and to optimizing the conditions of catalytic reactions. Central to this is a correct description of the constituent parts of atoms: electrons and nuclei.

An electron is incredibly light—its mass is almost 2,000 times smaller than that of even the lightest nucleus. This mass disparity allows to adapt rapidly to changes in nuclear positions, which usually enables researchers to use a simplified “adiabatic” description of atomic motion.

While this can be an excellent approximation, in some cases the electrons are affected by nuclear motion to such an extent that we need to abandon this simplification and account for the coupling between the dynamics of electrons and nuclei, leading to so-called “non-adiabatic effects.”

/* */