Menu

Blog

Archive for the ‘quantum physics’ category: Page 67

Aug 21, 2024

A maximally entangled quantum state with a fixed spectrum does not exist in the presence of noise, mathematician claims

Posted by in category: quantum physics

For more than 20 years, quantum researchers have wondered whether a quantum system can have maximum entanglement in the presence of noise. A mathematician from Spain recently answered the question: No.

Aug 21, 2024

Researchers observe Floquet states in colloidal nanoplatelets driven by visible pulses

Posted by in category: quantum physics

Solution-processed semiconductor nanocrystals are also called colloidal quantum dots (QDs). While the concept of size-dependent quantum effects had long been known to physicists, a sculpture of the theory into real nanodimensional objects remained impossible till the discovery of QDs. The size-dependent colors of QDs are essentially naked-eye, ambient-condition visualizations of the quantum size effect.

Aug 21, 2024

How a quantum sensor on the ISS could revolutionize space exploration

Posted by in categories: particle physics, quantum physics, space travel

I expect that space-based atom interferometry will lead to exciting new discoveries and fantastic quantum technologies impacting everyday life, and will transport us into a quantum future.

Aug 21, 2024

Entanglement Entropies of Nuclear Systems Grow as the Volume of those Systems

Posted by in categories: particle physics, quantum physics

Quantum entanglement—spooky action at a distance—works differently inside the nuclei of atoms than it does in other systems.

Aug 20, 2024

Quantum Leap in Superconductivity As Electrons Pair at Higher Temperatures

Posted by in categories: computing, quantum physics

Superconductors, known for enabling lossless electrical conductivity and even magnetic levitation, typically function only at extremely low temperatures. Recent research has identified electron pairing, a core superconductor behavior, in materials at higher-than-expected temperatures, such as an antiferromagnetic insulator.

This discovery by SLAC and Stanford researchers could lead to new ways to develop superconductors that operate closer to room temperature, potentially revolutionizing technology in many fields including quantum computing and transportation.

Exploring the Enigma of Superconductors.

Aug 20, 2024

Is the Brain A Quantum Computer? New Insights Say It Might Be

Posted by in categories: computing, neuroscience, particle physics, quantum physics

There is a theory dubbed “quantum consciousness,” which stipulates that brain functions and consciousness are derived from quantum effects like the collapse of the quantum wavefunction.

This is a strange part of quantum physics, where particles go from a state of simultaneous properties to a more “normal” state where they have one defined characteristic. It has notably been popularized by the concept of Schrödinger’s cat.

Aug 19, 2024

Scientists harness quantum microprocessor chips for advanced molecular spectroscopy simulation

Posted by in categories: cybercrime/malcode, finance, quantum physics, robotics/AI

Quantum simulation enables scientists to simulate and study complex systems that are challenging or even impossible using classical computers across various fields, including financial modeling, cybersecurity, pharmaceutical discoveries, AI and machine learning. For instance, exploring molecular vibronic spectra is critical in understanding the molecular properties in molecular design and analysis.

Aug 19, 2024

Quantum data beamed alongside ‘classical data’ in the same fiber-optic connection for the 1st time

Posted by in categories: internet, quantum physics

Scientists have successfully transmitted quantum data and conventional data through a single optical fiber for the first time.

The research demonstrates that quantum data in the form of entangled photons and conventional internet data sent as laser pulses can coexist in the same fiber-optic cable.

Aug 19, 2024

Physicists reveal the role of ‘magic’ in quantum computational power

Posted by in categories: computing, quantum physics

Entanglement is a fundamental concept in quantum information theory and is often regarded as a key indicator of a system’s “quantumness”. However, the relationship between entanglement and quantum computational power is not straightforward. In a study posted on the arXiv preprint server, physicists in Germany, Italy and the US shed light on this complex relationship by exploring the role of a property known as “magic” in entanglement theory. The study’s results have broad implications for various fields, including quantum error correction, many-body physics and quantum chaos.

Traditionally, the more entangled your quantum bits (qubits) are, the more you can do with your quantum computer. However, this belief – that higher entanglement in a quantum state is associated with greater computational advantage – is challenged by the fact that certain highly entangled states can be efficiently simulated on classical computers and do not offer the same computational power as other quantum states. These states are often generated by classically simulable circuits known as Clifford circuits.

\r \r

Aug 19, 2024

Revolutionary Quantum Compass Could Soon Make GPS-Free Navigation a Reality

Posted by in categories: computing, mobile phones, particle physics, quantum physics, satellites

Peel apart a smartphone, fitness tracker or virtual reality headset, and inside you’ll find a tiny motion sensor tracking its position and movement. Bigger, more expensive versions of the same technology, about the size of a grapefruit and a thousand times more accurate, help navigate ships, airplanes and other vehicles with GPS assistance.

Now, scientists are attempting to make a motion sensor so precise it could minimize the nation’s reliance on global positioning satellites. Until recently, such a sensor — a thousand times more sensitive than today’s navigation-grade devices — would have filled a moving truck. But advancements are dramatically shrinking the size and cost of this technology.

For the first time, researchers from Sandia National Laboratories have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.

Page 67 of 856First6465666768697071Last