Menu

Blog

Archive for the ‘quantum physics’ category: Page 645

Dec 17, 2018

MIT Researchers Can Shrink Objects to Nanoscale

Posted by in categories: biotech/medical, nanotechnology, quantum physics

MIT researchers invented a method of shrinking objects to the nanoscale.

The team can generate structures one-thousandth the volume of the original using a variety of materials, including metals, quantum dots, and DNA.

Existing techniques—like etching patterns onto a surface with light—work for 2D nanostructures, but not 3D. And while it’s possible to make 3D nanostructures, the process is slow, challenging, and restrictive.

Continue reading “MIT Researchers Can Shrink Objects to Nanoscale” »

Dec 17, 2018

Building a Quantum Future in Canada

Posted by in categories: futurism, quantum physics

An Interview with Christian Weedbrook, CEO of Xanadu Quantum Technologies.

Read more

Dec 16, 2018

Shrinking objects to the nanoscale

Posted by in categories: biotech/medical, nanotechnology, quantum physics

Researchers have invented a new way to fabricate nanoscale 3D objects of nearly any shape. They can also pattern the objects with a variety of useful materials, including metals, semiconducting quantum dots, and DNA.

Read more

Dec 16, 2018

Quantum Physicists Achieve a Breakthrough with ‘Light-Guiding Nanoscale Device’

Posted by in categories: nanotechnology, quantum physics

Another advancement in the field of optomechanics comes in the form of a recent study involving the use of a device designed for achieving an optimal controlled position of trapped nanoparticles.

Read more

Dec 16, 2018

Scientists Report Teleportation of Physical Objects From One Location To Another

Posted by in categories: particle physics, quantum physics

The concept of teleportation comes primarily from science fiction literature throughout human history, but things are changing. It’s 2015 and developments in quantum theory and general relativity physics have been successful in exploring the concept of teleportation for quite some time now.

Today, numerous teleportation breakthroughs have been made. One example is the work of Professor Rainer Blatt, at the University of Innsbruck. They were successfully able to perform teleportation on atoms for the first time, their work was published in the journal Nature. They were able to transfer key properties of one particle to another without using any physical link. In this case, teleportation occurred in the form of transferring quantum states between two atoms, these include the atom’s energy, motion, magnetic field and other physical properties. This is possible due to the strange behavior that exists at the atomic scale, known as entanglement. It’s what Einstein referred to as a “spooky action.”

Another study was published by a team of University of Queensland physicists in the journal Nature in 2013 demonstrating the successful teleportation with solid state systems. A process by which, again, quantum information can be transmitted from one place to another without sending a physical carrier of information. This is the same concept, and is made possible through the phenomenon of entanglement.

Continue reading “Scientists Report Teleportation of Physical Objects From One Location To Another” »

Dec 16, 2018

A new type of quantum computer has smashed every record

Posted by in categories: business, computing, information science, quantum physics

IonQ was founded on a gamble that ‘trapped ion quantum’ computing could outperform the silicon-based quantum computers that Google and others are building. As of right now, it does. IonQ has constructed a quantum computer that can perform calculations on a 79-qubit array, beating the previous king Google’s efforts by 7 qubits.

Their error rates are also the best in the business, with their single-qubit error rate at 99.97% while the nearest competitors are around the 99.5 mark, and a two-qubit error rate of 99.3% when most competitors are beneath 95%. But how does it compare to regular computers?

According to IonQ, in the kinds of workloads that quantum computers are being built for, it’s already overtaking them. The Bernstein-Vazirani Algorithm, a benchmark IonQ is hoping will take off, tests a computer’s ability to determine a single encoded number (called an oracle) when the computer can only ask a single yes/no question.

Continue reading “A new type of quantum computer has smashed every record” »

Dec 15, 2018

If energy can’t be created, where did it come from in the first place?

Posted by in categories: cosmology, education, quantum physics

We’re taught at school that energy can’t be created, merely converted from one form to another. But at the birth of the Universe – that is, everything – the energy needed for the Big Bang must have come from somewhere. Many cosmologists think its origin lies in so-called quantum uncertainty, which is known to allow energy to emerge literally from nowhere. What isn’t clear, however, is why this cosmic energy persisted long enough to drive the Big Bang.

Read more

Dec 14, 2018

This Could Be the Best Quantum Computer Yet

Posted by in categories: computing, particle physics, quantum physics

A startup based in Maryland has released and tested an impressive new quantum computer that demonstrates the power of an occasionally overlooked quantum computing architecture.

Companies like IBM, Google, and Rigetti are developing new kinds of computer processors that rely on the mathematics of subatomic particles to potentially perform calculations difficult for classical computers to do. These devices use superconductors as the basis for their qubits. A company called IonQ, however, has now announced a state-of-the-art system that relies on the quantum nature of atoms themselves, and it’s one of the best-performing quantum computers yet.

Read more

Dec 13, 2018

Understanding the Future of Humans, AI and Quantum Computers

Posted by in categories: quantum physics, robotics/AI

I believe it is likely that we will have 10,000 qubit quantum computers within 5 to 10 years. There is rapidly advancing work by IonQ with trapped ion quantum computers and a range of superconducting quantum computer systems by Google, IBM, Intel, Rigetti and 2000–5000 qubit quantum annealing computers by D-Wave Systems.

10,000 qubit quantum computers should have computing capabilities far beyond any conventional computer for certain classes of problems. They will be beyond not just any regular computer today but any non-quantum computer ever for those kinds of problems.

Those quantum computers will help improve artificial intelligence systems. How certain is this development? What will it mean for humans and our world?

Read more

Dec 11, 2018

IonQ: We’re perfecting trapped ion quantum computing to solve the world’s hardest problems

Posted by in categories: computing, quantum physics

Read more