Menu

Blog

Archive for the ‘quantum physics’ category: Page 641

Jan 15, 2019

Experiments detect entropy production in mesoscopic quantum systems

Posted by in categories: particle physics, quantum physics

The production of entropy, which means increasing the degree of disorder in a system, is an inexorable tendency in the macroscopic world owing to the second law of thermodynamics. This makes the processes described by classical physics irreversible and, by extension, imposes a direction on the flow of time. However, the tendency does not necessarily apply in the microscopic world, which is governed by quantum mechanics. The laws of quantum physics are reversible in time, so in the microscopic world, there is no preferential direction to the flow of phenomena.

One of the most important aims of contemporary scientific research is knowing exactly where the transition occurs from the quantum world to the classical world and why it occurs — in other words, finding out what makes the production of entropy predominate. This aim explains the current interest in studying mesoscopic systems, which are not as small as individual atoms but nevertheless display well-defined quantum behavior.

Read more

Jan 14, 2019

MIT Quantum Computing Online Courses for Professionals

Posted by in categories: business, computing, quantum physics

The quantum computing revolution is upon us. Like the first digital computers, quantum computers offer the possibility of technology exponentially more powerful than current systems. They stand to change companies, entire industries, and the world by solving problems that seem impossible today and will likely disrupt every industry.


MIT is offering online courses for professionals in Quantum Computing. Learn the business implifications, and applications of quantum, and take the next step in your career.

Read more

Jan 12, 2019

Get Involved in the World’s Biggest Quantum Physics Experiment Happening Right Now

Posted by in category: quantum physics

Several experiments over the past few years have reportedly violated Bell’s inequality – last year, the first Bell’s inequality experiment was completed without loopholes, but there’s still dispute over whether or not local realism actually holds up.

The new worldwide experiment aims to settle the matter once and for all, by using a huge amount of random, user-generated data to test Bell’s inequality.

Basically, the researchers are holding what’s called the ‘BIG Bell Test: worldwide quantum experiments powered by human randomness’, and they aim to conduct a range of Bell’s inequality tests around the world, controlled by human decisions made by volunteers (which they call Bellsters).

Continue reading “Get Involved in the World’s Biggest Quantum Physics Experiment Happening Right Now” »

Jan 12, 2019

Quantum computing explained in 10 minutes

Posted by in categories: biotech/medical, computing, encryption, quantum physics

A quantum computer isn’t just a more powerful version of the computers we use today; it’s something else entirely, based on emerging scientific understanding — and more than a bit of uncertainty. Enter the quantum wonderland with TED Fellow Shohini Ghose and learn how this technology holds the potential to transform medicine, create unbreakable encryption and even teleport information.

Read more

Jan 11, 2019

Did IBM Just Break Blockchain?

Posted by in categories: bitcoin, computing, cryptocurrencies, quantum physics

Cryptocurrency is not infallible… yet.


With IBM’s announcement of Q System One, the world’s first commercially available quantum computing system, will the processing power sufficient to break blockchain become readily available?

Read more

Jan 10, 2019

3D Atomic Quantum Chips and Advance to Eventual Large Scale Quantum Tech

Posted by in categories: computing, particle physics, quantum physics

Australia’s New South Wales scientists have adapted single atom technology to build 3D silicon quantum chips – with precise interlayer alignment and highly accurate measurement of spin states. The 3D architecture is considered a major step in the development of a blueprint to build a large-scale quantum computer.

They aligned the different layers in their 3D device with nanometer precision – and showed they could read out qubit states with what’s called ‘single shot’, i.e. within one single measurement, with very high fidelity.

Continue reading “3D Atomic Quantum Chips and Advance to Eventual Large Scale Quantum Tech” »

Jan 10, 2019

Handover for fully flexible satellite

Posted by in category: quantum physics

UK engineers complete the build of a novel software-defined telecoms satellite called Quantum.

Read more

Jan 8, 2019

Your Brain Isn’t a Computer — It’s a Quantum Field

Posted by in categories: computing, neuroscience, particle physics, quantum physics

While our choices and beliefs don’t often make sense or fit a pattern on a macro level, at a “quantum” level, they can be predicted with surprising accuracy.


The irrationality of how we think has long plagued psychology. When someone asks us how we are, we usually respond with “fine” or “good.” But if someone followed up about a specific event — “How did you feel about the big meeting with your boss today?” — suddenly, we refine our “good” or “fine” responses on a spectrum from awful to excellent.

In less than a few sentences, we can contradict ourselves: We’re “good” but feel awful about how the meeting went. How then could we be “good” overall? Bias, experience, knowledge, and context all consciously and unconsciously form a confluence that drives every decision we make and emotion we express. Human behavior is not easy to anticipate, and probability theory often fails in its predictions of it.

Continue reading “Your Brain Isn’t a Computer — It’s a Quantum Field” »

Jan 8, 2019

IBM’s new quantum computer is a symbol, not a breakthrough

Posted by in categories: computing, engineering, quantum physics

A beautiful piece of engineering, not a quantum leap.

Read more

Jan 8, 2019

IBM unveils first standalone quantum computer

Posted by in categories: computing, quantum physics

Powerful new system could eventually leave today’s machines in the dust.

Read more