Menu

Blog

Archive for the ‘quantum physics’ category: Page 610

Oct 24, 2019

Quantum Physics: Ménage à Trois Photon-Style – 3 Pairs of Photons Entangled for Ultra-Strong Correlations

Posted by in categories: encryption, quantum physics

Entanglement is one of the properties specific to quantum particles. When two photons become entangled, for instance, the quantum state of the first will correlate perfectly with the quantum state of the second, even if they are at a distance from one another. But what happens when three pairs of entangled photons are placed in a network? Researchers at the University of Geneva (UNIGE), Switzerland, working in partnership with Tehran’s Institute for Research in Fundamental Sciences (IPM), have proved that this arrangement allows for a new form of quantum correlation in theory. When the scientists forced two photons from separate pairs to become entangled, the connection was also made with their twin photon present elsewhere in the network, forming a highly-correlated triangle. These results, which you can read all about in the journal Physical Review Letters, create the potential for new applications in cryptography while reviving quantum physics at its most fundamental level.

Entanglement involves two quantum particles – photons, for example – forming a single physical system in spite of the distance between them. Every action performed on one of the two photons has an impact on its “twin” photon. This principle of entanglement leads to quantum non-locality: the measurements and statistics of the properties observed on one of the photons are very closely correlated with the measurements made on the other photon. “Quantum non-locality was discovered theoretically by John Stewart Bell in 1964,” begins Nicolas Brunner, associate professor in the Department of Applied Physics in UNIGE’s Faculty of Science. “This showed that photon correlations are exclusively quantum in nature, and so can’t be explained by conventional physics. This principle could be used to generate ultra-secure encryption keys.”

Oct 24, 2019

Scientists observe a single quantum vibration under ordinary conditions

Posted by in categories: particle physics, quantum physics

When a guitar string is plucked, it vibrates as any vibrating object would, rising and falling like a wave, as the laws of classical physics predict. But under the laws of quantum mechanics, which describe the way physics works at the atomic scale, vibrations should behave not only as waves, but also as particles. The same guitar string, when observed at a quantum level, should vibrate as individual units of energy known as phonons.

Now scientists at MIT and the Swiss Federal Institute of Technology have for the first time created and observed a single phonon in a common material at room temperature.

Until now, single phonons have only been observed at ultracold temperatures and in precisely engineered, microscopic materials that researchers must probe in a vacuum. In contrast, the team has created and observed single phonons in a piece of diamond sitting in open air at room temperature. The results, the researchers write in a paper published today in Physical Review X, “bring quantum behavior closer to our daily life.”

Oct 23, 2019

The Ouroboros Code: Self-Reference is the Name of the Game

Posted by in categories: computing, cosmology, mathematics, neuroscience, quantum physics

“If you are not convinced by the idea of reductive materialists that consciousness magically emerges from complexity in material structures or processes or if you are not satisfied with the viewpoint of idealists that matter is a mere thought form, then the present hypothesis may be something for you,” writes Dr. Antonin Tuynman when presenting his new book The Ouroboros Code. https://www.ecstadelic.net/top-stories/the-ouroboros-code-se…f-the-game #OuroborosCode


In “The Ouroboros Code” I will address the cybernetic dynamics of consciousness. Starting from the premise that Consciousness is the Ontological Primitive, I will propose mechanisms which may explain how a digital mathematical and material existence can be generated. Digging into Category Theory, Computational Simulacra and Quantum Computing, I will explore the mechanics of self-sustaining self-referential feedback loops as the Modus Operandi of Consciousness.

Let’s dive in the vortex of kaleidoscopic reflections, the wormhole of a dazzling “mise-en abyme” of recursiveness and the roller-coaster of the quantum non-locality. Explore the map which is the territory simultaneously by drawing your map of maps. Discover the non-dual bridge closing the gap between Science and Spirituality.

Continue reading “The Ouroboros Code: Self-Reference is the Name of the Game” »

Oct 23, 2019

Google scientists say they’ve achieved ‘quantum supremacy’ breakthrough over classical computers

Posted by in categories: computing, quantum physics

The achievement has been compared to the Wright brothers’ 12-second first flight at Kitty Hawk — an early, aspirational glimpse at a revolution to come. By providing exponentially greater calculation power than the machines we use today, quantum computers could one day transform the way we communicate ideas, conceal data and comprehend the universe.

Oct 23, 2019

Quantum leap in computing as scientists claim ‘supremacy’

Posted by in categories: computing, quantum physics

Paris (AFP) — Scientists claimed Wednesday to have achieved a near-mythical state of computing in which a new generation of machine vastly outperforms the world’s fastest super-computer, known as “quantum supremacy”.

A team of experts working on Google’s Sycamore machine said their quantum system had executed a calculation in 200 seconds that would have taken a classic computer 10,000 years to complete.

A rival team at IBM has already expressed scepticism about their claim.

Oct 23, 2019

Did Google Just Achieve ‘Quantum Supremacy’?

Posted by in categories: computing, quantum physics

Is Google moving past the rest of the competition.


Quantum computers’ potential and the advantages they promise over classical computers all remain largely theoretical, and hypothetically speaking, it is predicted that quantum computers will be able to solve problems that are beyond the reach of the classical computers we use today. Passing such a threshold will be considered proof of what we call “quantum supremacy.”

Continue reading “Did Google Just Achieve ‘Quantum Supremacy’?” »

Oct 23, 2019

We’re Stuck Inside the Universe. Lee Smolin Has an Idea for How to Study It Anyway

Posted by in categories: cosmology, education, information science, mathematics, quantum physics

The universe is kind of an impossible object. It has an inside but no outside; it’s a one-sided coin. This Möbius architecture presents a unique challenge for cosmologists, who find themselves in the awkward position of being stuck inside the very system they’re trying to comprehend.

It’s a situation that Lee Smolin has been thinking about for most of his career. A physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, Smolin works at the knotty intersection of quantum mechanics, relativity and cosmology. Don’t let his soft voice and quiet demeanor fool you — he’s known as a rebellious thinker and has always followed his own path. In the 1960s Smolin dropped out of high school, played in a rock band called Ideoplastos, and published an underground newspaper. Wanting to build geodesic domes like R. Buckminster Fuller, Smolin taught himself advanced mathematics — the same kind of math, it turned out, that you need to play with Einstein’s equations of general relativity. The moment he realized this was the moment he became a physicist. He studied at Harvard University and took a position at the Institute for Advanced Study in Princeton, New Jersey, eventually becoming a founding faculty member at the Perimeter Institute.

Continue reading “We’re Stuck Inside the Universe. Lee Smolin Has an Idea for How to Study It Anyway” »

Oct 23, 2019

Google officially lays claim to quantum supremacy

Posted by in categories: quantum physics, supercomputing

The quantum computer Sycamore reportedly performed a calculation that even the most powerful supercomputers available can’t reproduce.

Oct 22, 2019

A weird physics theory is gaining traction. Another version of you might already know it

Posted by in category: quantum physics

New book by Caltech astrophysicist Sean Carroll explores the ‘many worlds’ interpretation of quantum mechanics and its bizarre implications.

Oct 21, 2019

Pushing quantum photonics

Posted by in categories: computing, mobile phones, quantum physics

Quantum computers use the fundamentals of quantum mechanics to potentially speed up the process of solving complex computations. Suppose you need to perform the task of searching for a specific number in a phone book. A classical computer will search each line of the phone book until it finds a match. A quantum computer could search the entire phone book at the same time by assessing each line simultaneously and return a result much faster.