Toggle light / dark theme

:oooooooo.


Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an identification of the resulting Higgs oscillations. These serve as a fingerprint for the ground state gap symmetry. We provide a classification scheme of these oscillations and the quench symmetry based on group theory for the underlying lattice point group. For characterization, analytic calculations as well as full scale numeric simulations of the transient optical response resulting from an excitation by a realistic laser pulse are performed. Our classification of Higgs oscillations allows us to distinguish between different symmetries of the superconducting condensate.

A team led by Prof. Guo Guangcan from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) and collaborators first realized distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. The result is published in Optica.

Increasing the channel capacity and tolerance to noise in is a strong practical motivation for encoding quantum information in multilevel systems, qudits as opposed to qubits. From a foundational perspective, entanglement in higher dimensions exhibits more complex structures and stronger non-classical correlations. High-dimensional entanglement has demonstrated its potential for increasing channel capacity and resistance to noise in processing. Despite these benefits, the distribution of high-dimensional entanglement is relatively new and remains challenging.

The orbital angular momentum of photon is a high dimensional system which has been paid much attention to in recent years. However, orbital angular momentum entanglement is susceptible to atmospheric turbulence or mode crosstalk and mode dispersion in optical fibers. It can only transmit a few meters, and is limited to two-dimensional entanglement distribution.

In the heart of a galaxy cluster 200 million light-years away, astronomers have failed to detect hypothetical particles called axions.

This places new constraints on how we believe these particles work — but it also has pretty major implications for string theory, and the development of a Theory of Everything that describes how the physical Universe works.

“Until recently I had no idea just how much X-ray astronomers bring to the table when it comes to string theory, but we could play a major role,” said astrophysicist Christopher Reynolds of the University of Cambridge in the UK.

Abstract: The Higgs mechanism predicts, apart from the existence of a new scalar boson, the presence of a constant Higgs field that permeates all of space. The vacuum expectation value (VEV) of this field is affected by quantum corrections which are mainly generated by the self-interactions and couplings of the Higgs field to gauge bosons and heavy quarks. In this work we show that gravity can affect, in a non-trivial way, these quantum corrections through the finite parts of the one-loop contributions to the effective potential. In particular, we consider the corrections generated by the Standard Model Higgs self-interactions in slowly-varying weak gravitational backgrounds. The obtained results amount to the existence of non-negligible inhomogeneities in the Higgs VEV. Such inhomogeneities translate into spatial variations of the particle masses, and in particular of the proton-to-electron mass ratio. We find that these Higgs perturbations in our Solar System are controlled by the Eddington parameter, and are absent in pure General Relativity. Yet, they may be present in modified gravity theories. This predicted effect may be constrained by atomic clocks or high-resolution spectroscopic measurements, which could allow to improve current limits on modifications of Einstein’s gravity.

The neuromorphic approach is still in deep research, and is being investigated by Intel, IBM, HPE, MIT, Purdue, Stanford and others. It will likely be deployed in production solutions within the next three to five years. Like quantum computing, there is potential for a future solution than could be 1,000–10,000 times more efficient than the digital processing approach that is currently in vogue. But also like quantum, neuromorphic computing will require a lot of research to reach fruition. When it does, it will likely only be applied to a specific set of challenges. I will continue to watch with interest.


Analyst Karl Freund takes a look at Intel’s recent announcements in the realm of neuromorphic computing.

A quantum sensor could give Soldiers a way to detect communication signals over the entire radio frequency spectrum, from 0 to 100 GHz, said researchers from the Army.

Such wide spectral coverage by a single antenna is impossible with a traditional receiver system, and would require multiple systems of individual antennas, amplifiers and other components.

In 2018, Army scientists were the first in the world to create a quantum receiver that uses highly excited, super-sensitive atoms—known as Rydberg atoms—to detect communications signals, said David Meyer, a scientist at the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. The researchers calculated the receiver’s channel capacity, or rate of data transmission, based on , and then achieved that performance experimentally in their lab—improving on other groups’ results by orders of magnitude, Meyer said.

:oooo.


A research team from ITMO University, with the help of colleagues from MIPT (Russia) and Politecnico di Torino (Italy), has predicted a novel type of topological quantum state of two photons. Scientists have also applied a new, affordable experimental method for testing this prediction. The method relies on an analogy: Instead of expensive experiments with quantum systems of two or more entangled photons, the researchers have used resonant electric circuits of higher dimensionality described by similar equations. The obtained results can be useful for the engineering of optical chips and quantum computers without the need for expensive experiments. The research was published in Nature Communications.

Light plays a key role in modern information technologies: With its help, information is transmitted over large distances via optical fibers. In the future, scientists anticipate the invention of optical chips and computers that process information with the help of photons—light quanta—instead of electrons, as it is done today. This will decrease energy consumption, while also increasing the capabilities of computers. However, to turn these predictions into reality, fundamental and applied research of light behavior at the micro- and nanoscale is needed.

In the new study, the researchers have theoretically predicted the formation of a new quantum state of photons: Two photons propagating in the array of quantum microresonators (qubits) can form a bound pair and settle down on the edge of the array. A proper experiment demands special nanostructures, as well as special devices to create such quantum state of photons and detect it. Currently, such capabilities are available only to very few research teams worldwide.