Menu

Blog

Archive for the ‘quantum physics’ category: Page 607

May 16, 2019

Researchers shed new light on atomic ‘wave function’

Posted by in categories: biotech/medical, quantum physics, space

Physicists have demonstrated a new way to obtain the essential details that describe an isolated quantum system, such as a gas of atoms, through direct observation. The new method gives information about the likelihood of finding atoms at specific locations in the system with unprecedented spatial resolution. With this technique, scientists can obtain details on a scale of tens of nanometers—smaller than the width of a virus.

Experiments performed at the Joint Quantum Institute (JQI), a research partnership between the National Institute of Standards and Technology (NIST) and the University of Maryland, use an optical lattice—a web of laser light that suspends thousands of —to determine the probability that an atom might be at any given location. Because each individual atom in the lattice behaves like all the others, a measurement on the entire group of atoms reveals the likelihood of an individual atom to be in a particular point in space.

Published in the journal Physical Review X, the JQI technique (and a similar technique published simultaneously by a group at the University of Chicago) can yield the likelihood of the atoms’ locations at well below the wavelength of the light used to illuminate the atoms—50 times better than the limit of what optical microscopy can normally resolve.

Continue reading “Researchers shed new light on atomic ‘wave function’” »

May 16, 2019

For a Split Second, a Quantum Computer Made History Go Backward

Posted by in categories: computing, particle physics, quantum physics

Using a quantum computer, physicists successfully reversed time for an artificial atom. You can even try it at home.

Read more

May 15, 2019

Quantum sunlight experiment could shed light on stellar astrophysics

Posted by in category: quantum physics

Solar photons pair-up with light from a quantum dot in a “highly non-classical” manner.

Read more

May 15, 2019

The Thesis on Consciousness and Experiential Realism: Digital Philosophy Perspective

Posted by in categories: alien life, computing, information science, quantum physics

A radically new view articulated now by a number of digital philosophers is that consciousness, quantum computational and non-local in nature, is resolutely computational, and yet, has some “non-computable” properties. Consider this: English language has 26 letters and about 1 million words, so how many books could be possibly written in English? If you are to build a hypothetical computer containing all mass and energy of our Universe and ask it this question, the ultimate computer wouldn’t be able to compute the exact number of all possible combinations of words into meaningful story-lines in billions of years! Another example of non-computability of combinatorics: if you are to be born and live your own life again and again in our Quantum Multiverse, you could live googolplex (10100) lives, but they all would be somewhat different — some of them drastically different from the life you’re living right now, some only slightly — never quite the same, and timeline-indeterminate.

Another kind of non-computability is akin to fuzzy logic but based on pattern recognition. Deeper understanding refers to a situation when a conscious agent gets to perceive numerous patterns in complex environments and analyze that complexity from the multitude of perspectives. That is beautifully encapsulated by Isaiah Berlin’s quote: “To understand is to perceive patterns.” The ability to recognize patterns in chaos is not straightforwardly algorithmic but rather meta-algorithmic and yet, I’d argue, deeply computational. The types of non-computability that I just described may somehow relate to the non-computable element of quantum consciousness to which Penrose refers in his work.

Picture

Continue reading “The Thesis on Consciousness and Experiential Realism: Digital Philosophy Perspective” »

May 15, 2019

Physicists Are Starting to Suspect Physical Reality Is an Illusion

Posted by in categories: mathematics, particle physics, quantum physics

Given that everything at its base atom is moving maybe our interpretation of reality may be different than its actuality. From shooting photons bouncing off surfaces the world is a cacophony of all sorts of things happening at once.


A provocative new column in Scientific American floats the idea that what’s fundamentally real in the universe — its actual, base reality — isn’t the quarks, fields, and quantum phenomena that seem to comprise it.

Instead, according to scientist and philosopher Bernardo Kastrup, some are starting to suspect that matter itself is an illusion — and that the only real thing is information.

Continue reading “Physicists Are Starting to Suspect Physical Reality Is an Illusion” »

May 14, 2019

Researchers successfully sent a simulated elementary particle back in time

Posted by in categories: cosmology, particle physics, quantum physics

The results are fascinating and spur the imagination, but don’t start investing in flux capacitors yet. This experiment also shows us that sending even a simulated particle back in time requires serious outside manipulation. To create such an external force to manipulate even one physical particle’s quantum waves is well beyond our abilities.

“We demonstrate that time-reversing even ONE quantum particle is an unsurmountable task for nature alone,” study author Vinokur wrote to the New York Times in an email [emphasis original]. “The system comprising two particles is even more irreversible, let alone the eggs — comprising billions of particles — we break to prepare an omelet.”

A press release from the Department of Energy notes that for the “timeline required for [an external force] to spontaneously appear and properly manipulate the quantum waves” to appear in nature and unscramble an egg “would extend longer than that of the universe itself.” In other words, this technology remains bound to quantum computation. Subatomic spas that literally turn back the clock aren’t happening.

Continue reading “Researchers successfully sent a simulated elementary particle back in time” »

May 14, 2019

Indeterminate nature: the resurgence of quantum biology

Posted by in categories: biological, quantum physics

A melding of biology and physics first suggested in the 1920s is enjoying a revival as evidence mounts. Stephen Fleischfresser reports.

Read more

May 14, 2019

Physicists invent flux capacitor, break time-reversal symmetry

Posted by in categories: futurism, quantum physics

In the popular movie franchise “Back to the Future”, an eccentric scientist creates a time machine that runs on a flux capacitor.

Now a group of actual physicists from Australia and Switzerland have proposed a device which uses the tunneling of around a capacitor, breaking time-reversal symmetry.

The research, published this week in Physical Review Letters, proposes a of electronic circulators, which are devices that control the direction in which microwave signals move.

Continue reading “Physicists invent flux capacitor, break time-reversal symmetry” »

May 13, 2019

Quantum world-first—researchers reveal accuracy of two-qubit calculations in silicon

Posted by in category: quantum physics

For the first time ever, researchers have measured the fidelity—that is, the accuracy—of two-qubit logic operations in silicon, with highly promising results that will enable scaling up to a full-scale quantum processor.

Read more

May 12, 2019

The End of Theoretical Physics As We Know It

Posted by in categories: computing, quantum physics

Computer simulations and custom-built quantum analogues are changing what it means to search for the laws of nature.

Read more