Menu

Blog

Archive for the ‘quantum physics’ category: Page 509

Aug 1, 2019

Nanotechnology for quantum computers, industry skills for physics students, technologies that make physics happen

Posted by in categories: computing, cosmology, engineering, nanotechnology, quantum physics

This week’s podcast features an interview with Ray LaPierre, who heads up the department of engineering physics at McMaster University in Canada. Ray talks to fellow Canadian Hamish Johnston about his research in semiconductor nanowires, in particular for use in photonics and quantum computers, and also shares his experiences of working at JDS Uniphase during the telecoms boom.

Physics World’s Anna Demming also joins the podcast to describe a flurry of new results in the emerging field of twistronics – where two layers of graphene are stacked on top of each other but twisted at a slight angle to each other. The discovery last year that bilayer graphene can become a superconductor if the two graphene layers are twisted at the so-called magic angle of 1.1º won Physics World’s 2018 Breakthrough of the Year, and since then the race has been on to investigate other angle-dependent properties of twisted bilayer graphene. Anna describes how different research teams are now trying to work out what causes these intriguing effects.

We also talk to industry editor Margaret Harris about the importance of technology and engineering for scientific progress. Margaret shares her own “light-bulb” moment, when she realized that new laser technology could have saved hours of experimental time during her PhD, and also highlights several articles in the latest Physics World Focus on Instruments and Vacuum that highlight how breakthrough scientific discoveries rely on developments in the enabling technologies – including the first images of a black hole that were revealed in April.

Aug 1, 2019

How Long Does Quantum Tunneling Take?

Posted by in categories: computing, particle physics, quantum physics, space

The phenomenon known as “tunneling” is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It’s as if they simply evaded the “barrier” region by making a “tunnel” through it.

It’s very important to note that this phenomenon is absolutely and unquestionably real, demonstrated in countless ways. The most dramatic of these is sunlight— the Sun wouldn’t be able to fuse hydrogen into helium without quantum tunneling— but it’s also got more down-to-earth technological applications. Tunneling serves as the basis for Scanning Tunneling Microscopy, which uses the tunneling of electrons across a tiny gap between a sharp tip and a surface to produce maps of that surface that can readily resolve single atoms. It’s also essential for the Josephson effect, which is the basis of superconducting detectors of magnetic fields and some of the superconducting systems proposed for quantum computing.

So, there is absolutely no debate among physicists about whether quantum tunneling is a thing that happens. Physicists get a bit twitchy without something to argue over, though, and you don’t have to dig into tunneling (heh) very far to find a disputed question, namely “How long does quantum tunneling take?”

Aug 1, 2019

Scientists discover infinite decay and rebirth in quantum particles

Posted by in categories: computing, life extension, particle physics, quantum physics

O.o!


A team of scientists recently determined certain quantum particles can regenerate after they’ve decayed. This has grand implications for the future of humanity, quantum computing, and intergalactic graffiti.

Theoretical physicists from the Technical University of Munich and the Max Planck Institute conducted simulation experiments to determine that certain quasiparticles are essentially immortal. Per the second law of thermodynamics nothing lasts forever, but these quantum particle fields can reassemble themselves after decaying – just like the phoenix from Greek mythology.

Continue reading “Scientists discover infinite decay and rebirth in quantum particles” »

Jul 31, 2019

Neuroscientists Decode Human Thoughts into Text in Real-Time

Posted by in categories: biotech/medical, business, computing, quantum physics, space travel

E_News™ delivers the most urgent News of the Day that we find relevant to the main theme of EcstadelicNET such as a new, cutting-edge scientific research, technological breakthroughs and emerging trends. Some material may be fully or partially from outside sources. The Top Stories section, on the other hand, contains only original content written by affiliated authors. Take me to Top Stories.

All Biotechnology Business News Crypto News Digital Physics Neurotechnologies Press Releases Quantum Computing Space Exploration

Alex Vikoulov is a futurist, digital philosopher, independent scholar, media commentator, essayist, author of the 2019 book “The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution.” Lives in San Francisco Bay Area. http://amazon.com/author/alexvikoulov

Jul 30, 2019

A Blueprint for a Quantum Propulsion Machine

Posted by in categories: alien life, quantum physics, transportation

This could be used for real hoverboards and hovering spacecraft could float out of atmosphere just like aliens do :3.


The quantum vacuum has fascinated physicists ever since Hendrik Casimir and Dirk Polder suggested in 1948 that it would exert a force on a pair of narrowly separated conducting plates. Their idea was eventually confirmed when the force was measured in 1997. Just how to exploit this force is still not clear, however.

In recent years, a new way of thinking about the quantum vacuum has emerged which has vastly more potential. And today, one physicist describes how it could be used to create propulsion.

Continue reading “A Blueprint for a Quantum Propulsion Machine” »

Jul 30, 2019

Travelling towards a quantum internet at light speed

Posted by in categories: computing, internet, quantum physics

A research team lead by Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot, each being a quantum bit and a quantum computer candidate. The achievement represents a major step towards a “quantum internet,” in which future computers can rapidly and securely send and receive quantum information.

Quantum computers have the potential to vastly outperform current systems because they work in a fundamentally different way. Instead of processing discrete ones and zeros, information, whether stored in electron spins or transmitted by photons, can be in a superposition of multiple states simultaneously. Moreover, the states of two or more objects can become entangled, so that the status of one cannot be completely described without this other. Handling entangled states allow quantum computers to evaluate many possibilities simultaneously, as well as transmit information from place to place immune from eavesdropping.

However, these entangled states can be very fragile, lasting only microseconds before losing coherence. To realize the goal of a quantum internet, over which coherent light signals can relay quantum information, these signals must be able to interact with inside distant computers.

Jul 26, 2019

Physicists discover new quantum trick for graphene: magnetism

Posted by in categories: computing, quantum physics

Sometimes the best discoveries happen when scientists least expect it. While trying to replicate another team’s finding, Stanford physicists recently stumbled upon a novel form of magnetism, predicted but never seen before, that is generated when two honeycomb-shaped lattices of carbon are carefully stacked and rotated to a special angle.

The authors suggest the magnetism, called orbital ferromagnetism, could prove useful for certain applications, such as quantum computing. The group describes their finding in the July 25 issue of the journal Science.

“We were not aiming for magnetism. We found what may be the most exciting thing in my career to date through partially targeted and partially accidental exploration,” said study leader David Goldhaber-Gordon, a professor of physics at Stanford’s School of Humanities and Sciences. “Our discovery shows that the most interesting things turn out to be surprises sometimes.”

Jul 26, 2019

Virginia Tech researchers lead breakthrough in quantum computing

Posted by in categories: chemistry, computing, information science, quantum physics

Abstract: The large, error-correcting quantum computers envisioned today could be decades away, yet experts are vigorously trying to come up with ways to use existing and near-term quantum processors to solve useful problems despite limitations due to errors or “noise.”

A key envisioned use is simulating molecular properties. In the long run, this can lead to advances in materials improvement and drug discovery. But not with noisy calculations confusing the results.

Now, a team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer. Virginia Tech College of Science faculty members Ed Barnes, Sophia Economou, and Nick Mayhall recently published a paper in Nature Communications detailing the advancement.

Jul 25, 2019

Quantum microphone counts particles of sound

Posted by in categories: computing, particle physics, quantum physics

A device that eavesdrops on the quantum whispers of atoms could form the basis of a new type of quantum computer.

Jul 24, 2019

Unconventional phenomena triggered by acoustic waves in 2-D materials

Posted by in categories: energy, quantum physics

Researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS, South Korea), and colleagues have reported a novel phenomenon, called Valley Acoustoelectric Effect, which takes place in 2-D materials, similar to graphene. This research is published in Physical Review Letters and brings new insights to the study of valleytronics.

In acoustoelectronics, surface (SAWs) are employed to generate . In this study, the team of theoretical physicists modelled the propagation of SAWs in emerging 2-D , such as single-layer molybdenum disulfide (MoS2). SAWs drag MoS2 electrons (and holes), creating an electric current with conventional and unconventional components. The latter consists of two contributions: a warping-based current and a Hall current. The first is direction-dependent, is related to the so-called valleys—electrons’ local energy minima—and resembles one of the mechanisms that explains photovoltaic effects of 2-D materials exposed to light. The second is due to a specific effect (Berry phase) that affects the velocity of these electrons travelling as a group and resulting in intriguing phenomena, such as anomalous and quantum Hall effects.

The team analyzed the properties of the acoustoelectric current, suggesting a way to run and measure the conventional, warping, and Hall currents independently. This allows the simultaneous use of both optical and acoustic techniques to control the propagation of charge carriers in novel 2-D materials, creating new logical devices.