Toggle light / dark theme

Magnetic Revolution: Diamonds and Rust Rewrite Physics Textbooks

Cambridge researchers have identified magnetic monopoles in hematite, suggesting new possibilities for advanced, eco-friendly computing technologies. This first-time observation of emergent monopoles in a natural magnet could unlock new avenues in quantum material research.

Researchers have discovered magnetic monopoles – isolated magnetic charges – in a material closely related to rust, a result that could be used to power greener and faster computing technologies.

Researchers led by the University of Cambridge used a technique known as diamond quantum sensing to observe swirling textures and faint magnetic signals on the surface of hematite, a type of iron oxide.

Breakthrough in coherent two-photon LIDAR overcomes range limitations

New research has unveiled an advancement in Light Detection and Ranging (LIDAR) technology, offering unparalleled sensitivity and precision in measuring the distance of remote objects.

This research, published in Physical Review Letters, is a result of a collaboration between the group of Professor Yoon-Ho Kim at POSTECH in South Korea, and the Quantum Science and Technology Hub at the University of Portsmouth.

Coherent LIDAR has long been a cornerstone in distance measurement, but its capabilities have been restrained by the time of the light source. In a pioneering move, researchers have introduced two-photon LIDAR, eliminating the range limitations imposed by coherence time, to achieve accurate and precise ranging of a remote object situated far beyond the coherence time dictated by the spectral bandwidth of the light source.

Fractal photonic anomalous Floquet topological insulators to generate multiple quantum chiral edge states

An anomalous Floquet topological insulator (AFTI) is a periodically driven topological insulator (TI with nonzero winding numbers to support topological edge modes, though its standard topological invariants like Chern numbers are zero.

The photonic constructed by an optical array fabricated by the femtosecond laser direct writing (FLDW) is an important platform for to realize photonic AFTIs, because the FLDW offers flexible design of true three-dimensional (3D) waveguide structures and precise control of each coupling between waveguides. Moreover, the evolution distance of the lattice can be mapped as the evolution time.

In -direct-written photonic AFTIs, selective coupling of adjacent waveguides in a cycle is explicitly defined by the discrete periodically driving protocol. At the complete transfer discrete driving protocol, chiral edge modes co-exist with dispension-less bulk modes, and the lattice energy transfer efficiency of the chiral edge mode is the highest among all TIs (close to 100%), so it is very suitable for the transport of fragile quantum states.

Polaritons open up a new lane on the semiconductor highway

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today’s most cutting-edge semiconductors, those phonons don’t remove enough heat. That’s why Purdue University researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called “polaritons.”

Thomas Beechem loves . He talks about it loud and proud, like a preacher at a big tent revival.

“We have several ways of describing energy,” said Beechem, associate professor of mechanical engineering. “When we talk about light, we describe it in terms of particles called ‘photons.’ Heat also carries energy in predictable ways, and we describe those waves of energy as ‘phonons.’ But sometimes, depending on the material, photons and phonons will come together and make something new called a ‘.’ It carries energy in its own way, distinct from both photons or phonons.”

Time’ May Explain Why Gravity Won’t Play by Quantum Rules

A new theory suggests that the unification between quantum physics and general relativity has eluded scientists for 100 years because huge “fluctuations” in space and time mean that gravity won’t play by quantum rules.

Since the early 20th century, two revolutionary theories have defined our fundamental understanding of the physics that governs the universe. Quantum physics describes the physics of the small, at scales tinier than the atom, telling us how fundamental particles like electrons and photons interact and are governed. General relativity, on the other hand, describes the universe at tremendous scales, telling us how planets move around stars, how stars can die and collapse to birth black holes, and how galaxies cluster together to build the largest structures in the cosmos.

Quantum ‘magic’ could help explain the origin of spacetime

A quantum property dubbed “magic” could be the key to explaining how space and time emerged, a new mathematical analysis by three RIKEN physicists suggests. The research is published in the journal Physical Review D.

It’s hard to conceive of anything more basic than the fabric of spacetime that underpins the universe, but have been questioning this assumption. “Physicists have long been fascinated about the possibility that space and time are not fundamental, but rather are derived from something deeper,” says Kanato Goto of the RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS).

This notion received a boost in the 1990s, when theoretical physicist Juan Maldacena related the gravitational theory that governs spacetime to a theory involving . In particular, he imagined a hypothetical space—which can be pictured as being enclosed in something like an infinite soup can, or “bulk”—holding objects like that are acted on by gravity. Maldacena also imagined particles moving on the surface of the can, controlled by . He realized that mathematically a used to describe the particles on the boundary is equivalent to a gravitational theory describing the black holes and spacetime inside the bulk.

Wormholes help resolve black hole information paradox

A RIKEN physicist and two colleagues have found that a wormhole—a bridge connecting distant regions of the Universe—helps to shed light on the mystery of what happens to information about matter consumed by black holes.

Einstein’s theory of predicts that nothing that falls into a black hole can escape its clutches. But in the 1970s, Stephen Hawking calculated that black holes should emit radiation when , the theory governing the microscopic realm, is considered. “This is called black hole evaporation because the black hole shrinks, just like an evaporating water droplet,” explains Kanato Goto of the RIKEN Interdisciplinary Theoretical and Mathematical Sciences.

This, however, led to a paradox. Eventually, the black hole will evaporate entirely—and so too will any information about its swallowed contents. But this contradicts a fundamental dictum of quantum physics: that information cannot vanish from the Universe. “This suggests that general relativity and quantum mechanics as they currently stand are inconsistent with each other,” says Goto. “We have to find a unified framework for quantum gravity.”

Resolving the black hole ‘fuzzball or wormhole’ debate

Black holes really are giant fuzzballs, a new study says.

The study attempts to put to rest the debate over Stephen Hawking’s famous information paradox, the problem created by Hawking’s conclusion that any data that enters a black hole can never leave. This conclusion accorded with the laws of thermodynamics, but opposed the fundamental laws of quantum mechanics.

“What we found from is that all the mass of a black hole is not getting sucked in to the center,” said Samir Mathur, lead author of the study and professor of physics at The Ohio State University. “The black hole tries to squeeze things to a point, but then the particles get stretched into these strings, and the strings start to stretch and expand and it becomes this fuzzball that expands to fill up the entirety of the black hole.”

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum computing

For the first time, a team of Princeton physicists have been able to link together individual molecules into special states that are quantum mechanically “entangled.” In these bizarre states, the molecules remain correlated with each other—and can interact simultaneously—even if they are miles apart, or indeed, even if they occupy opposite ends of the universe. This research was recently published in the journal Science.

“This is a breakthrough in the world of because of the fundamental importance of quantum entanglement,” said Lawrence Cheuk, assistant professor of physics at Princeton University and the senior author of the paper. “But it is also a breakthrough for practical applications because entangled molecules can be the for many future applications.”

These include, for example, quantum computers that can solve certain problems much faster than conventional computers, that can model complex materials whose behaviors are difficult to model, and that can measure faster than their traditional counterparts.

/* */