Toggle light / dark theme

American quantum computing startup PsiQuantum announced last week that it has cracked a significant puzzle on the road to making the technology useful: manufacturing quantum chips in large quantities.

PsiQuantum burst out of stealth mode in 2021 with a blockbuster funding announcement. It followed up with two more last year.

The company uses so-called “photonic” quantum computing, which has long been dismissed as impractical.

Check out my introduction to quantum mechanics course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Two weeks ago, Microsoft made a big splash in the media by claiming that they’d found a way to build a scalable quantum computing platform which could reach one million qubits in a short period of time. They claimed this was possible with the help of a type of topological qubit called Majorana states. But it appears there are several… issues with the company’s published research. I have a quick summary.

The video with the comments from Sergey and Vincent is a one hour long discussion which you can watch in full here: • Majorana Fireside Chat: HOW CLOSE ARE…

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #tech #quantum

In the annals of scientific inquiry, few endeavors have been as audacious as the attempt to bridge the chasm between the tangible and the intangible, the empirical and the experiential. The declassification of the 1983 U.S. Army Intelligence report, “Analysis and Assessment of The Gateway Process,” offers a compelling case study in this regard. Authored by Lieutenant Colonel Wayne M. McDonnell, the report delves into altered states of consciousness, suggesting that human consciousness may transcend the physical plane, potentially supporting concepts akin to reincarnation. This proposition invites us to explore the intersection of infodynamics — the study of information dynamics within physical systems — and phenomena traditionally deemed spiritual, under the premise that all such phenomena are rooted in the natural order.

At the heart of this exploration lies the principle that information, much like energy, is conserved within the universe. This concept is reminiscent of the first law of thermodynamics, which asserts that energy cannot be created or destroyed, only transformed. In the realm of information theory, this translates to the idea that information persists, undergoing transformations but never facing annihilation. This perspective aligns with the notion that consciousness, as a form of information, may continue beyond the cessation of its current physical embodiment.

Quantum mechanics further enriches this discourse. The phenomenon of quantum entanglement, wherein particles become interconnected in such a way that the state of one instantaneously influences the state of another, regardless of the spatial separation, challenges our classical understanding of locality and separability. This non-locality suggests a deeply interconnected fabric of reality, where information is not confined to a singular point in space or time. Such a framework provides a plausible basis for understanding how consciousness, as an informational construct, could transcend individual physical forms, offering a naturalistic foundation for phenomena like reincarnation.

Amazon Web Services (AWS) on Thursday announced Ocelot, its first-generation quantum computing chip, as it enters the race against fellow tech giants in harnessing the experimental technology.

Developed by the AWS Center for Quantum Computing at the California Institute of Technology, the new chip can reduce the costs of implementing quantum error correction by up to 90%, according to the company.

When molecules collide with surfaces, they exchange energy with the surface atoms. This complex process is influenced by quantum interference, where different pathways overlap, creating patterns where some paths enhance each other while others cancel out. This affects how molecules exchange energy and react with surfaces.

- Advertisement -

Observing quantum interference in collisions with heavier molecules like methane (CH4) was challenging due to the many possible pathways. Scientists wondered if quantum effects would disappear, making classical physics enough to describe these processes.

This review discusses the development and uses of imatinib mesylate, a protein tyrosine kinase inhibitor useful in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors that was recently approved by the Food and Drug Administration. Imatinib targets platelet-derived growth factor receptor, inhibits the fusion product of the Philadelphia chromosome, and targets c-kit, a protein tyrosine kinase. The drug may also be effective in the treatment of other tumors that express platelet-derived growth factor receptor or c-kit.

Chinese scientists unveiled a superconducting quantum computer prototype named “Zuchongzhi 3.0” with 105 qubits on Monday (Beijing Time), marking a breakthrough in China’s quantum computing advancements.

The achievement also sets a new record in quantum computational advantage within superconducting systems.

Developed by Chinese quantum physicists Pan Jianwei, Zhu Xiaobo, Peng Chengzhi, etc., “Zuchongzhi 3.0” features 105 readable qubits and 182 couplers. It processes quantum random circuit sampling tasks at a speed quadrillion times faster than the world’s most powerful supercomputer and 1 million times faster than Google’s latest results published in Nature in October 2024.

In classical electromagnetism, electric and magnetic fields are the fundamental entities responsible for all physical effects. There is a compact formulation of electromagnetism that expresses the fields in terms of another quantity known as the electromagnetic potential, which can have a value everywhere in space. The fields are easily derived theoretically from the potential, but the potential itself was taken to be purely a mathematical device, with no physical meaning.

In quantum mechanics, shifts in the electromagnetic potential alter the description of a charged particle only by shifting its phase—that is, by advancing or retarding the crests and troughs in its quantum wave function. In general, however, such a phase change does not lead to any difference in the measurable properties of a particle.

But in 1959 Yakir Aharonov and David Bohm of the University of Bristol, UK, devised a thought experiment that linked the potential to a measurable result. In their scenario, a beam of electrons is split, with the two halves made to travel around opposite sides of a cylindrical electromagnet, or solenoid. The magnetic field is concentrated inside the solenoid and can be made arbitrarily weak outside by making the cylinder extremely narrow. So Aharonov and Bohm argued that the two electron paths can travel through an essentially field-free region that surrounds the concentrated field within the electromagnet.

A new high-performance quantum processor boasts 105 superconducting qubits and rivals Google’s acclaimed Willow processor.

In the quest for useful quantum computers, processors based on superconducting qubits are especially promising. These devices are both programmable and capable of error correction. In December 2024, researchers at Google Quantum AI in California reported a 105-qubit superconducting processor known as Willow (see Research News: Cracking the Challenge of Quantum Error Correction) [1]. Now Jian-Wei Pan at the University of Science and Technology of China and colleagues have demonstrated their own 105-qubit processor, Zuchongzhi 3.0 (Fig. 1) [2]. The two processors have similar performances, indicating a neck-and-neck race between the two groups.

Quantum advantage is the claim that a quantum computer can perform a specific task faster than the most powerful nonquantum, or classical, computer. A standard task for this purpose is called random circuit sampling, and it works as follows. The quantum computer applies a sequence of randomly ordered operations, known as a random circuit, to a set of qubits. This circuit transforms the qubits in a unique and complex way. The computer then measures the final states of the qubits. By repeating this process many times with different random circuits, the quantum computer records a probability distribution of final qubit states.