Menu

Blog

Archive for the ‘quantum physics’ category: Page 270

Jul 28, 2022

AMAZING Quantum Discovery May Solve WHY WE EXIST | Quantum Entanglement, Quantum Theory

Posted by in categories: computing, quantum physics

Quantum mechanic discoveries are some of the most groundbreaking discoveries that scientists can make as they allow us to get a better understand of the space and matter around us. From multiple dimensions to quantum superposition, there are many things that are difficult for scientists and physicists to explain. Hopefully we can clear up some of the confusion!

Thanks for watching Matter!
🔔 Hit the bell next to Subscribe so you never miss a video!
❀ Like, Comment and Subscribe if you are new to the channel!

Continue reading “AMAZING Quantum Discovery May Solve WHY WE EXIST | Quantum Entanglement, Quantum Theory” »

Jul 28, 2022

The 2022 Oppenheimer Lecture: The Quantum Origins of Gravity

Posted by in categories: cosmology, quantum physics

It was once thought that gravity and quantum mechanics were inconsistent with one another. Instead, we are discovering that they are so closely connected that one can almost say they are the same thing. Professor Susskind will explain how this view came into being over the last two decades, and illustrate how a number of gravitational phenomena have their roots in the ordinary principles of quantum mechanics.

Leonard Susskind is an American physicist, who is a professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics, and quantum cosmology.

Jul 28, 2022

NASA’s VIPER Prototype Motors Through Moon-like Obstacle Course

Posted by in categories: computing, quantum physics, space travel

NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) prototype recently endured the most realistic tests to-date of its ability to drive through the most difficult terrain during its mission to the Moon’s South Pole.


Quantum computers, devices that exploit quantum phenomena to perform computations, could eventually help tackle complex computational problems faster and more efficiently than classical computers. These devices are commonly based on basic units of information known as quantum bits, or qubits.

Jul 28, 2022

An alternative superconducting qubit achieves high performance for quantum computing

Posted by in categories: computing, quantum physics

Quantum computers, devices that exploit quantum phenomena to perform computations, could eventually help tackle complex computational problems faster and more efficiently than classical computers. These devices are commonly based on basic units of information known as quantum bits, or qubits.

Researchers at Alibaba Quantum Laboratory, a unit of Alibaba Group’s DAMO research institute, have recently developed a using fluxonium qubits, which have so far not been the preferred choice when developing quantum computers for industry teams. Their paper, published in Physical Review Letters, demonstrates the potential of fluxonium for developing highly performing superconducting circuits.

“This work is a critical step for us in advancing our quantum computing research,” Yaoyun Shi, Director of Alibaba’s Quantum Laboratory, told Phys.org. “When we started our research program, we decided to explore fluxonium as the building block for future quantum computers, deviating from the mainstream choice of the transmon qubit. We believe that this relatively new type of superconducting qubit could go much further than transmon.”

Jul 27, 2022

Hiding Secrets Using Quantum Entanglement

Posted by in categories: computing, quantum physics

More frequencies of light can pass between two coupled wavy waveguides than between two coupled straight ones, something that could allow for more flexible designs of optics-based circuits on silicon chips.

Jul 27, 2022

Team scripts breakthrough quantum algorithm

Posted by in categories: computing, information science, particle physics, quantum physics

City College of New York physicist Pouyan Ghaemi and his research team are claiming significant progress in using quantum computers to study and predict how the state of a large number of interacting quantum particles evolves over time. This was done by developing a quantum algorithm that they run on an IBM quantum computer. “To the best of our knowledge, such particular quantum algorithm which can simulate how interacting quantum particles evolve over time has not been implemented before,” said Ghaemi, associate professor in CCNY’s Division of Science.

Entitled “Probing geometric excitations of fractional quantum Hall states on quantum computers,” the study appears in the journal of Physical Review Letters.

“Quantum mechanics is known to be the underlying mechanism governing the properties of elementary particles such as electrons,” said Ghaemi. “But unfortunately there is no easy way to use equations of quantum mechanics when we want to study the properties of large number of electrons that are also exerting force on each other due to their .”

Jul 27, 2022

Physicists Create New Phase of Matter With “Extra” Time Dimension

Posted by in categories: computing, mathematics, quantum physics

“It is very exciting to see this unusual phase of matter realized in an actual experiment, especially because the mathematical description is based on a theoretical ‘extra’ time dimension,” Philipp Dumitrescu, study co-author and research fellow at the Flatiron Institute’s Center for Computational Quantum Physics, told the magazine.

In order to successfully create the topological phase, and thus the “extra” dimension, the scientists targeted a quantum computer’s quantum bits — or qubits — with a quasi-periodic laser pulse based on the Fibonacci sequence. Think quasicrystal.

“The Fibonacci sequence is a non-repeating but also not totally random sequence,” study co-author Andrew Potter, a quantum physicist at the University of British Columbia, told Vice. “Which effectively lets us realize two independent time-dimensions in the system.”

Jul 27, 2022

One gene could boost plants’ resilience to extreme weather — and store more carbon

Posted by in categories: computing, quantum physics

In this edition of HORIZONS, read about a gene that can help boost crop plants’ resilience, a new quantum computing breakthrough, and more.

Jul 26, 2022

Physics Mystery Solved: Findings Could “Revolutionize” Our Understanding of Distance

Posted by in categories: quantum physics, space

According to traditional thinking, distorting a flat space by bending it or stretching it is necessary to create a curved space. A group of scientists at Purdue University has developed a new technique for making curved spaces that also provides the answer to a physics mystery. The team has developed a method using non-Hermiticity, which occurs in all systems coupled to environments, to build a hyperbolic surface and a number of other prototypical curved spaces without causing any physical distortions of physical systems.

“Our work may revolutionize the general public’s understanding of curvatures and distance,” says Qi Zhou, Professor of Physics and Astronomy.

“It has also answered long-standing questions in non-Hermitian quantum mechanics by bridging non-Hermitian physics and curved spaces. These two subjects were assumed to be completely disconnected. The extraordinary behaviors of non-Hermitian systems, which have puzzled physicists for decades, become no longer mysterious if we recognize that the space has been curved. In other words, non-Hermiticity and curved spaces are dual to each other, being the two sides of the same coin.”

Jul 26, 2022

New leap in understanding nickel oxide superconductors

Posted by in categories: particle physics, quantum physics

A new study shows that nickel oxide superconductors, which conduct electricity with no loss at higher temperatures than conventional superconductors do, contain a type of quantum matter called charge density waves, or CDWs, that can accompany superconductivity.

The presence of CDWs shows that these recently discovered , also known as nickelates, are capable of forming correlated states— electron soups that can host a variety of quantum phases, including superconductivity, researchers from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported in Nature Physics today.

“Unlike in any other superconductor we know about, CDWs appear even before we dope the material by replacing some atoms with others to change the number of electrons that are free to move around,” said Wei-Sheng Lee, a SLAC lead scientist and investigator with the Stanford Institute for Materials and Energy Science (SIMES) who led the study.