Menu

Blog

Archive for the ‘quantum physics’ category: Page 253

Feb 4, 2022

Do we create space-time? A new perspective on the fabric of reality

Posted by in category: quantum physics

For the first time, it is possible to see the quantum world from multiple points of view at once. This hints at something very strange – that reality only takes shape when we interact with each other.

Feb 4, 2022

Canada will get its first universal quantum computer from IBM

Posted by in categories: biotech/medical, government, quantum physics, robotics/AI

Quantum computing is still rare enough that merely installing a system in a country is a breakthrough, and IBM is taking advantage of that novelty. The company has forged a partnership with the Canadian province of Quebec to install what it says is Canada’s first universal quantum computer. The five-year deal will see IBM install a Quantum System One as part of a Quebec-IBM Discovery Accelerator project tackling scientific and commercial challenges.

The team-up will see IBM and the Quebec government foster microelectronics work, including progress in chip packaging thanks to an existing IBM facility in the province. The two also plan to show how quantum and classical computers can work together to address scientific challenges, and expect quantum-powered AI to help discover new medicines and materials.

IBM didn’t say exactly when it would install the quantum computer. However, it will be just the fifth Quantum One installation planned by 2023 following similar partnerships in Germany, Japan, South Korea and the US. Canada is joining a relatively exclusive club, then.

Feb 4, 2022

Scientists Create ‘Coldest Temperature Ever’

Posted by in categories: particle physics, quantum physics, space

As far as we can tell from modern science, there’s no upper limit to temperature. There sure is a lower limit, though. We call that absolute zero, measured as −273.15 °C (−459.67 °F). Scientists have yet to reach that limit in any experiment, but they’re getting close. A team of physicists in Germany has gotten closer than ever before, reaching a temperature of 38 trillionths of a degree from absolute zero, according to New Atlas.

This news might sound familiar because it is — scientists have inched closer to absolute zero on numerous occasions. A few years ago, MIT created what was at the time the coldest spot in the universe with sodium and potassium atoms. The International Space Station has also conducted experiments within a fraction of a degree of absolute zero. The problem is that no matter how well insulated your testing setup is, a tiny amount of energy always sneaks in from the environment. When that happens, you can’t reach absolute zero and halt all atomic motion.

The team from the University of Bremen broke the record once again by dropping the experiment (above) from the top of a very tall tower. Yes, really. They started with a cloud of 100,000 rubidium atoms, which were confined inside a magnetic field. When cooled, the atoms clump together and form a mysterious state of matter known as a Bose-Einstein condensate. In this state, the atoms act like one giant atom, making quantum effects visible at the macroscopic scale.

Feb 3, 2022

There Are 2 Dimensions of Time, Theoretical Physicist Claims

Posted by in category: quantum physics

You can’t really enter into “another dimension” as science fiction would have you believe. Instead, dimensions are how we experience the world. But some aspects actually suggest to one expert, not one but two dimensions of time. If it were true, the theory could actually heal the most glaring rift in physics —between quantum mechanics and general relativity.

Feb 3, 2022

Researchers set record

Posted by in categories: computing, quantum physics

Quantum science holds promise for many technological applications, such as building hackerproof communication networks or quantum computers that could accelerate new drug discovery. These applications require a quantum version of a computer bit, known as a qubit, that stores quantum information.

But researchers are still grappling with how to easily read the information held in these qubits and struggle with the short memory time, or coherence, of qubits, which is usually limited to microseconds or milliseconds.

A team of researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago has achieved two major breakthroughs to overcome these common challenges for quantum systems. They were able to read out their qubit on demand and then keep the intact for over five seconds—a new record for this class of devices. Additionally, the researchers’ qubits are made from an easy-to-use material called , which is widely found in lightbulbs, electric vehicles and high-voltage electronics.

Feb 3, 2022

New atomic clock is the most precise ever created

Posted by in categories: particle physics, quantum physics

If scientists could measure the oscillations of just one energized cesium atom, they’d be able to keep perfect time, but they can’t due to a weird phenomenon called the standard quantum limit.

Instead, they have to measure thousands of atoms at once and then average out the results for atomic clocks, which leads to a just slightly imprecise second.

Now, MIT researchers have found a way to create a more precise atomic clock by exploiting another weird quantum phenomenon: entanglement.

Feb 2, 2022

‘Quantum friction’ slows water flow through carbon nanotubes, resolving long-standing fluid dynamics mystery

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

For 15 years, scientists have been baffled by the mysterious way water flows through the tiny passages of carbon nanotubes—pipes with walls that can be just one atom thick. The streams have confounded all theories of fluid dynamics; paradoxically, fluid passes more easily through narrower nanotubes, and in all nanotubes it moves with almost no friction. What friction there is has also defied explanation.

In an unprecedented mashup of fluid dynamics and , researchers report in a new theoretical study published February 2 in Nature that they finally have an answer: ‘quantum .’

The proposed explanation is the first indication of quantum effects at the boundary of a solid and a liquid, says study lead author Nikita Kavokine, a research fellow at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) in New York City.

Feb 2, 2022

IBM Unveils 127-Qubit Quantum Computer

Posted by in categories: computing, quantum physics

On November 16, during its online Quantum Summit, IBM announced that it had successfully completed initial development of the 127-qubit (quantum bit) Eagle quantum computer. Last year, IBM’s Hummingbird quantum computer handled 65 qubits, and, the year before that, the company’s Falcon quantum computer was handling calculations using 27 qubits. So the company has been steadily increasing the number of qubits that its quantum machines can handle, roughly doubling the number of operational qubits in its quantum machines on an annual basis. However, the Eagle quantum computer is the last member of IBM’s Quantum System One family. Designs have reached the limit of the cryogenic refrigerator used to cool the Josephson Junctions that hold the qubits, so IBM has had to work with Bluefors Cryogenics to develop a new, larger cryogenic platform for bigger machines.

If you don’t understand qubits or how quantum computers work, join the club. Nothing in the binary word of today’s digital computers prepares you to understand quantum computing, although there are some superficial similarities. For example, quantum computers store data in qubits just as digital computers store data in bits. However, a bit can store only a “1” or a “0.” Each qubit stores both a “1” and a “0” at the same time in a state of superposition. Consequently, information density is much higher for qubit storage.

Further, qubits can be entangled, a phenomenon that Albert Einstein once described as “spooky action at a distance.” Quantum entanglement, a property of the quantum world, was once the stuff of science fiction. However, it’s quite real and an important part of quantum computing.

Jan 31, 2022

Carbon nanomaterials for future quantum technologies

Posted by in categories: nanotechnology, quantum physics

An exceptionally large grant will allow a team of Empa researchers to work on an ambitious project over the next ten years: The Werner Siemens Foundation (WSS) is supporting Empa’s CarboQuant project with 15 million Swiss francs. The project aims to lay the foundations for novel quantum technologies that may even operate at room temperature – in contrast to current technologies, most of which require cooling to near absolute zero.

“With this project we are taking a big step into the unknown,” says Oliver Gröning who coordinates the project. “Thanks to the partnership with the Werner Siemens Foundation, we can now move much further away from the safe shore of existing knowledge than would be possible in our ‘normal’ day-to-day research. We feel a little like Christopher Columbus and are now looking beyond the horizon for something completely new.”

The expedition into the unknown now being undertaken by Empa researchers Pascal Ruffieux, Oliver Gröning and Gabriela Borin-Barin under the lead of Roman Fasel was preceded by twelve years of intensive research activity. The researchers from Empa’s [email protected] laboratory, headed by Fasel, regularly published their work in renowned journals such as Nature, Science and Angewandte Chemie.

Jan 31, 2022

IBM and CERN use quantum computing to hunt elusive Higgs boson

Posted by in categories: computing, finance, information science, particle physics, quantum physics

That is not to say that the advantage has been proven yet. The quantum algorithm developed by IBM performed comparably to classical methods on the limited quantum processors that exist today – but those systems are still in their very early stages.

And with only a small number of qubits, today’s quantum computers are not capable of carrying out computations that are useful. They also remain crippled by the fragility of qubits, which are highly sensitive to environmental changes and are still prone to errors.

Rather, IBM and CERN are banking on future improvements in quantum hardware to demonstrate tangibly, and not only theoretically, that quantum algorithms have an advantage.