Toggle light / dark theme

International quantum year launches in style at UNESCO headquarters in Paris

More than 800 researchers, policy makers and government officials from around the world gathered in Paris this week to attend the official launch of the International Year of Quantum Science and Technology (IYQ). Held at the headquarters of the United Nations Educational, Scientific and Cultural Organisation (UNESCO), the two-day event included contributions from four Nobel prize-winning physicists – Alain Aspect, Serge Haroche, Anne l’Huillier and William Phillips.

Opening remarks came from Cephas Adjej Mensah, a research director in the Ghanaian government, which last year submitted the draft resolution to the United Nations for 2025 to be proclaimed as the IYQ. “Let us commit to making quantum science accessible to all,” Mensah declared, reminding delegates that the IYQ is intended to be a global initiative, spreading the benefits of quantum equitably around the world. “We can unleash the power of quantum science and technology to make an equitable and prosperous future for all.”

The keynote address was given by l’Huillier, a quantum physicist at Lund University in Sweden, who shared the 2023 Nobel Prize for Physics with Pierre Agostini and Ferenc Krausz for their work on attosecond pulses. “Quantum mechanics has been extremely successful,” she said, explaining how it was invented 100 years ago by Werner Heisenberg on the island of Helgoland. “It has led to new science and new technology – and it’s just the beginning.”

Powerful results from joining quantum computing and AI

Researchers have used quantum physics and machine learning to quickly and accurately understand a mound of data – a technique, they say, could help extract meaning from gargantuan datasets.

Their method works on groundwater monitoring, and they’re trialling it on other fields like traffic management and medical imaging.

“Machine learning and artificial intelligence is a very powerful tool to look at datasets and extract features,” Dr Muhammad Usman, a quantum scientist at CSIRO, tells Cosmos.

Max Tegmark — Physics of Information

Information has become increasingly important in understanding the physical world around us, from ordinary computers to the underlying principles of fundamental physics, including quantum theory. How can information help discern physics? What can physics contribute to understanding information? And what about quantum information?

Make a donation to Closer To Truth to help us continue exploring the world’s deepest questions without the need for paywalls: https://shorturl.at/OnyRq.

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Watch more interviews on quantum information science and quantum mechanics: https://bit.ly/3rs6ZVs.

Max Tegmark is Professor of Physics at Massachusetts Institute of Technology. He holds a BS in Physics and a BA in Economics from the Royal Institute of Technology in Sweden. He also earned a MA and PhD in physics from University of California, Berkeley.

Register for free at CTT.com for subscriber-only exclusives: http://bit.ly/2GXmFsP

Certain animal navigation abilities found to operate at or near quantum limit of magnetic field detection

A pair of physicists at the University of Crete has found that some types of biological magnetoreceptors used by various creatures to navigate, operate at or near the quantum limit. In their paper published in the journal PRX Life, I. K. Kominis and E. Gkoudinakis describe how they worked the problem of magnetic sensing in tiny animals in reverse by putting bounds on unknown quantum boundaries, and what it showed about the navigation abilities of certain animals.

Prior research has shown that many creatures use the Earth’s as a navigation aid. Some sharks, fish and birds, for example, use it to help them traverse long distances. Different animals also have different types of magnetic sensors, including radical-pair, induction and magnetite mechanisms.

Radical-pair works by sensing correlations between unpaired electrons attached to certain molecules. Induction works by turning energy in the magnetic field into electricity and then sensing the electrical charge. And magnetite-based magnetoreception involves sensing the movement or orientation of tiny iron crystals in the body, similar to a human-made compass.

Extending a paradox: Quantum mechanics experiment measures a pulse of light in 37 dimensions

A team of physicists affiliated with multiple institutions in China has measured a pulse of light in 37 dimensions. In their paper published in Science Advances, the group explains that their experiment was meant to demonstrate that quantum mechanics is more nonclassical than thought.

Quantum mechanics involves how things work at the , while describes classical theory, which has aspects of what physicists call local realism, where things happen around us in the ways that we expect them to happen and in the order we expect.

Physicists have tried and failed to unite the two theories for decades. The problem has only grown more difficult in recent years as research efforts have shown that the differences between them are greater than thought. In this new effort, the researchers in China sought to see how far nonclassical differs from classical theory by carrying out an experiment to demonstrate the Greenberger–Horne–Zeilinger (GHZ) paradox.

Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

/* */