Toggle light / dark theme

A Breakthrough on the Edge: One Step Closer to Topological Quantum Computing

Researchers at the University of Cologne have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing / publication in Nature Physics.

A team of experimental physicists led by the University of Cologne have shown that it is possible to create superconducting effects in special materials known for their unique edge-only electrical properties. This discovery provides a new way to explore advanced quantum states that could be crucial for developing stable and efficient quantum computers. Their study, titled ‘Induced superconducting correlations in a quantum anomalous Hall insulator’, has been published in Nature Physics.

Superconductivity is a phenomenon where electricity flows without resistance in certain materials. The quantum anomalous Hall effect is another phenomenon that also causes zero resistance, but with a twist: it is confined to the edges rather than spreading throughout. Theory predicts that a combination of superconductivity and the quantum anomalous Hall effect will give rise to topologically-protected particles called Majorana fermions that will potentially revolutionize future technologies such as quantum computers. Such a combination can be achieved by inducing superconductivity in the edge of a quantum anomalous Hall insulator that is already resistance-free. The resultant chiral Majorana edge state, which is a special type of Majorana fermions, is a key to realizing ‘flying qubits’ (or quantum bits) that are topologically protected.

Cutting-Edge Quantum Sensor Unveils the Hidden Atomic World

A new quantum sensor developed by researchers from Korea and Germany can measure magnetic fields at the atomic scale with high precision. This technology uses a single molecule for detection, offering superior resolution and the potential for significant advancements in quantum materials and molecular systems analysis.

In a scientific breakthrough, an international research team from Korea’s IBS Center for Quantum Nanoscience (QNS) and Germany’s Forschungszentrum Jülich developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

“You have to be small to see small.” —

Quantum Consciousness, AI, & You: What Happens When Machines Become Sentient?

As advances in AI and Machine Learning accelerate, the once-fictional idea of machines gaining Consciousness is becoming a pressing reality. This video explores the potential risks and questions how prepared Hue-BEings are for this new form of Consciousness. From self-driving cars to Intelligent machinery, we delve into the Evolution and implications of AI emulating Hue-BEing interactions. What type of Future will we all Build, Together?

“Impossible” Neutron Breakthrough is Made, Building on Famous Double-Slit Experiment

A breakthrough that builds on the effects observed in the famous “double slit” experiment could allow physicists a greater ability to observe quantum effects within gravitational fields, according to new research published online.

A team of Italian scientists says they have successfully conducted neutron interferometry using more than one silicon crystal in a physics first that once seemed impossible, based on past attempts.

Researchers trap atoms, force them to serve as photonic transistors

This could be the road to quantum computation.


“In contrast, solid-state emitters embedded in a photonic circuit are hardly ‘the same’ due to slightly different surroundings influencing each emitter. It is much harder for many solid-state emitters to build up phase coherence and collectively interact with photons like cold atoms. We could use cold atoms trapped on the circuit to study new collective effects,” Hung continues.

The platform demonstrated in this research could provide a photonic link for future distributed quantum computing based on neutral atoms. It could also serve as a new experimental platform for studying collective light-matter interactions and for synthesizing quantum degenerate trapped gases or ultracold molecules.

“Unlike electronic transistors used in daily life, our atom-coupled integrated photonic circuit obeys the principles of quantum superposition,” explains Hung. “This allows us to manipulate and store quantum information in trapped atoms, which are quantum bits known as qubits. Our circuit may also efficiently transfer stored quantum information into photons that could ‘fly’ through the photonic wire and a fiber network to communicate with other atom-coupled integrated circuits or atom-photon interfaces. Our research demonstrates a potential to build a based on cold-atom integrated nanophotonic circuits.”

Weaving Light: Unraveling the Quantum Lattice of Kagome Metals

A study focused on cesium vanadium antimonide, a Kagome metal, has shown its potential in enhancing nano-optics by generating unique plasmon polaritons. These findings could advance optical communication and sensing technologies.

In traditional Japanese basket-weaving, the ancient “Kagome” design, notable for its symmetrical arrangement of interlaced triangles with shared corners, graces many handcrafted items. Similarly, in quantum physics, scientists use the term “Kagome” to refer to a category of materials whose atomic structures mimic this unique lattice pattern.

Since 2019, when the latest family of Kagome metals was discovered, physicists have been working to better understand their properties and potential applications. A new study led by Florida State University (FSU) Assistant Professor of Physics Guangxin Ni focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons — nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves. The work was published recently in the journal Nature Communications.

Experiment uses quantum techniques to stimulate photons, enhancing search for dark matter

Scientists cannot observe dark matter directly, so to “see” it, they look for signals that it has interacted with other matter by creating a visible photon. However, signals from dark matter are incredibly weak. If scientists can make a particle detector more receptive to these signals, they can increase the likelihood of discovery and decrease the time to get there. One way to do this is to stimulate the emission of photons.