Toggle light / dark theme

It’s the first time in history — Light transformed into a strange form of solid

Scientists have achieved their initial goal of converting light into a supersolid material that unites solid-stage characteristics with those of superfluids. The discovery establishes paths toward studying uncommon quantum nature states of matter while carrying great implications for technological growth.

The matter form known as a supersolid behaves as both a solid and shows the properties of a superfluid. Despite keeping its rigid arrangement, the material demonstrates smooth flow while remaining non-frictional. Theoretical research on supersolids as a matter state has continued for decades since scientists first considered them in the 1970s. Through precise conditions, scientists believe materials can develop combined solid and superfluid properties to produce an absolute natural anomaly.

The discovery shows how particular materials become supple when exposed to exceptionally cold temperatures because they transition into a viscosity-free state. The dual properties of rigidness combined with fluidity create an extraordinary phase called supersolid in matter. Traditional materials possess two distinct states because solids maintain their shape, yet liquids possess free movement. Supersolids demonstrate behaviour beyond normal fluid-solid definitions because they exhibit features of both states.

Quantum Computer Performs 2.6 Billion Years of Computation In Only 4 Minutes

Four minutes. Imagine what you can accomplish in four minutes. Make coffee? Read half an article? Send a few text messages?

For most of us, four minutes pass in a heartbeat. Yet during those same four minutes, a quantum computer recently performed calculations that would have kept a conventional supercomputer busy for 2.6 billion years.

Scientists achieved something magical—compressing billions of years of computation into minutes. Such power shifts our understanding of what’s possible. Quantum computing won’t just change how we process information; it will transform medicine, climate science, materials design, and countless other fields we rely on daily.

How does water turn into ice? Scientists simulated the initial steps of ice formation

A team from Princeton University has successfully used artificial intelligence (AI) to solve equations that control the quantum behavior of individual atoms and molecules to replicate the early stages of ice formation. The simulation shows how water molecules transition into solid ice with quantum accuracy.

Roberto Car, Princeton’s Ralph W. *31 Dornte Professor in Chemistry, who co-pioneered the approach of simulating molecular behaviors based on the underlying quantum laws more than 35 years ago, said, “In a sense, this is like a dream come true. Our hope then was that eventually, we would be able to study systems like this one. Still, it was impossible without further conceptual development, and that development came via a completely different field, that of artificial intelligence and data science.”

Modeling the early stages of freezing water, the ice nucleation process could increase the precision of climate and weather modeling and other processes like flash-freezing food. The new approach could help track the activity of hundreds of thousands of atoms over thousands of times longer periods, albeit still just fractions of a second, than in early studies.

/* */