Menu

Blog

Archive for the ‘quantum physics’ category: Page 138

Sep 23, 2023

Exploring the relationship between thermalization dynamics and quantum criticality in lattice gauge theories

Posted by in categories: information science, particle physics, quantum physics

Researchers from the University of Science and Technology of China(USTC) of the Chinese Academy of Sciences (CAS) have developed an ultra-cold atom quantum simulator to study the relationship between the non-equilibrium thermalization process and quantum criticality in lattice gauge field theories. The research was led by Pan Jianwei and Yuan Zhensheng, in collaboration with Zhai Hui from Tsinghua University and Yao Zhiyuan from Lanzhou University.

Their findings reveal that multi-body systems possessing gauge symmetry tend to thermalize to an equilibrium state more easily when situated in a critical region. The results were published in Physical Review Letters.

Gauge and are two foundational theories of physics. From the Maxwell’s equations of classical electromagnetism to and the Standard Model, which describe the interactions of fundamental particles, all adhere to specific gauge symmetries. On the other hand, statistical mechanics connects the microscopic states of large ensembles of particles (such as atoms and molecules) to their macroscopic statistical behaviors, based on the principle of maximum entropy proposed by Boltzmann and others. It elucidates, for instance, how the energy distribution of microscopic particles affects macroscopic quantities like pressure, volume, or temperature.

Sep 22, 2023

SLAC fires up the world’s most powerful X-ray laser: LCLS-II ushers in a new era of science

Posted by in categories: biological, chemistry, computing, quantum physics, science, sustainability

The newly upgraded Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL) at the Department of Energy’s SLAC National Accelerator Laboratory successfully produced its first X-rays, and researchers around the world are already lined up to kick off an ambitious science program.

The upgrade, called LCLS-II, creates unparalleled capabilities that will usher in a new era in research with X-rays.

Scientists will be able to examine the details of quantum materials with unprecedented resolution to drive new forms of computing and communications; reveal unpredictable and fleeting chemical events to teach us how to create more sustainable industries and ; study how carry out life’s functions to develop new types of pharmaceuticals; and study the world on the fastest timescales to open up entirely new fields of scientific investigation.

Sep 22, 2023

Engineers develop enhanced GaN-based LED array visible light communication system

Posted by in categories: energy, internet, quantum physics

Under the limitation of current density, micro-LED is difficult to achieve watts level optical power, which is not suitable for long-distance and underwater optical communication that requires high-power optical transmitter devices. Therefore, how to improve the communication performance of conventional-size LED is also a key issue at present.

The authors of an article published in Opto-Electronic Science studied a wavelength division multiplexing visible light communication system based on multi-color LED. The system uses a Si substrate GaN-based LED with a 3D structured quantum well. In the active layer of this LED, there is a three-dimensional structure (“V” shaped pit, or V-pit) with a hexagonal profile, opening towards the P-type GaN layer.


With the large-scale commercial use of 5G, global academia and industry have started research on the next-generation mobile communication technology (6G).

Continue reading “Engineers develop enhanced GaN-based LED array visible light communication system” »

Sep 22, 2023

How can quantum computers be better than classical computers?

Posted by in categories: quantum physics, robotics/AI

Scientists have been exploring both experimental and theoretical ways to prove quantum supremacy.

Ramis Movassagh, a researcher at Google Quantum AI, recently had a study published in the journal Nature Physics. Here, he has reportedly demonstrated in theory that simulating random quantum circuits and determining their output will be extremely difficult for classical computers. In other words, if a quantum computer solves this problem, it can achieve quantum supremacy.

Continue reading “How can quantum computers be better than classical computers?” »

Sep 21, 2023

Intel Plans a Quantum Computing Approach to Leapfrog Rivals

Posted by in categories: finance, quantum physics, robotics/AI

The chipmaker is developing a sequel to its Tunnel Falls quantum processor. Quantum computing in coming years could improve batteries, finance and AI.

Sep 20, 2023

First Light for a Next-Generation Light Source

Posted by in categories: biological, chemistry, nanotechnology, particle physics, quantum physics

X-ray free-electron lasers (XFELs) first came into existence two decades ago. They have since enabled pioneering experiments that “see” both the ultrafast and the ultrasmall. Existing devices typically generate short and intense x-ray pulses at a rate of around 100 x-ray pulses per second. But one of these facilities, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in California, is set to eclipse this pulse rate. The LCLS Collaboration has now announced “first light” for its upgraded machine, LCLS-II. When it is fully up and running, LCLS-II is expected to fire one million pulses per second, making it the world’s most powerful x-ray laser.

The LCLS-II upgrade signifies a quantum leap in the machine’s potential for discovery, says Robert Schoenlein, the LCLS’s deputy director for science. Now, rather than “demonstration” experiments on simple, model systems, scientists will be able to explore complex, real-world systems, he adds. For example, experimenters could peer into biological systems at ambient temperatures and physiological conditions, study photochemical systems and catalysts under the conditions in which they operate, and monitor nanoscale fluctuations of the electronic and magnetic correlations thought to govern the behavior of quantum materials.

The XFEL was first proposed in 1992 to tackle the challenge of building an x-ray laser. Conventional laser schemes excite large numbers of atoms into states from which they emit light. But excited states with energies corresponding to x-ray wavelengths are too short-lived to build up a sizeable excited-state population. XFELs instead rely on electrons traveling at relativistic speed through a periodic magnetic array called an undulator. Moving in a bunch, the electrons wiggle through the undulator, emitting x-ray radiation that interacts multiple times with the bunch and becomes amplified. The result is a bright x-ray beam with laser coherence.

Sep 20, 2023

Researchers Unlock Chip-Based Thermionic Cooling for Quantum Computers, More

Posted by in categories: computing, quantum physics

Researchers with the VTT Technical Research Center of Finland have developed thermionic devices that allow for absolute-zero temperatures to be reached without having to deal with costly liquid-based.

Sep 20, 2023

Excited-State (Anti)Aromaticity Explains Why Azulene Disobeys Kasha’s Rule

Posted by in categories: chemistry, quantum physics

Fluorescence exclusively occurs from the lowest excited state of a given multiplicity according to Kasha’s rule. However, this rule is not obeyed by a handful of anti-Kasha fluorophores whose underlying mechanism is still understood merely on a phenomenological basis. This lack of understanding prevents the rational design and property-tuning of anti-Kasha fluorophores. Here, we propose a model explaining the photophysical properties of an archetypal anti-Kasha fluorophore, azulene, based on its ground-and excited-state (anti)aromaticity. We derived our model from a detailed analysis of the electronic structure of the ground singlet, first excited triplet, and quintet states and of the first and second excited singlet states using the perturbational molecular orbital theory and quantum-chemical aromaticity indices.

Sep 19, 2023

Axial Higgs mode spotted in materials at room temperature

Posted by in categories: materials, quantum physics

Year 2022 This could be a good room temperature superconductor 😗😁.


New quasiparticle could be used in quantum sensors.

Sep 19, 2023

New quasi-particle bridges microwave and optical domains

Posted by in categories: computing, particle physics, quantum physics

In a paper published today (Sept. 18) in Nature Communications, researchers from the Paul-Drude-Institut in Berlin, Germany, and the Instituto Balseiro in Bariloche, Argentina, demonstrated that the mixing of confined quantum fluids of light and GHz sound leads to the emergence of an elusive phonoriton quasi-particle—in part a quantum of light (photon), a quantum of sound (phonon) and a semiconductor exciton. This discovery opens a novel way to coherently convert information between optical and microwave domains, bringing potential benefits to the fields of photonics, optomechanics and optical communication technologies.

The research team’s work draws inspiration from an everyday phenomenon: the transfer of energy between two coupled oscillators, such as, for instance, two pendulums connected by a spring. Under specific coupling conditions, known as the strong-coupling (SC) regime, energy continuously oscillates between the two pendulums, which are no longer independent, as their frequencies and decay rates are not those of the uncoupled ones. The oscillators can also be photonic or electronic quantum states: the SC regime, in this case, is fundamental for quantum state control and swapping.

In the above example, the two pendulums are assumed to have the same frequency, i.e., in resonance. However, hybrid quantum systems require coherent information transfer between oscillators with largely dissimilar frequencies. Here, one important example is in networks of quantum computers. While the most promising quantum computers operate with microwave qubits (i.e., at few GHz), quantum information is efficiently transferred using near infrared photons (100ds THz).