Toggle light / dark theme

A new formula that connects a material’s magnetic permeability to spin dynamics has been derived and tested 84 years after the debut of its electric counterpart.

If antiferromagnets, altermagnets, and other emerging quantum materials are to be harnessed for spintronic devices, physicists will need to better understand the spin dynamics in these materials. One possible path forward is to exploit the duality between electric and magnetic dynamics expressed by Maxwell’s equations. From this duality, one could naively expect mirror-like similarities in the behavior of electric and magnetic dipoles. However, a profound difference between the quantized lattice electric excitations—such as phonons—and spin excitations—such as paramagnetic and antiferromagnetic spin resonances and magnons—has now been unveiled in terms of their corresponding contributions to the static electric susceptibility and magnetic permeability. Viktor Rindert of Lund University in Sweden and his collaborators have derived and verified a formula that relates a material’s magnetic permeability to the frequencies of magnetic spin resonances [1].

Leave a Comment