Toggle light / dark theme

#blackhole Physics lecture video link, just click on the link for knowledge.


Here I discused general relativity — gravitytheory, Einstein field, schwarzchild equation, Black hall definition, Ramanujan numbers. Here I explain only static blackhole.
theory of general relativity.
special relativity vs general relativity.
einstein’s theory of general relativity.
general relativity equation.
special and general relativity.
spacetime and geometry an introduction to general relativity.
general relativity vs quantum mechanics.
a first course in general relativity.
general relativity and quantum mechanics.
general relativity and gravitation.
general relativity and black holes.
general relativity and time.
general relativity and special relativity.
general relativity astronomy.
general relativity assignment.
general relativity and gravity.
a new way to visualize general relativity.
albert einstein’s theory of general relativity.
albert einstein general relativity.
applications of general relativity.
alternatives to general relativity.
a first course in general relativity 3rd edition.
advanced general relativity.
a short course in general relativity.
general relativity black holes.
general relativity basics.
general relativity course.
general relativity course online.
general relativity class.
covariant derivative general relativity.
conformal transformation general relativity.
general relativity definition.
general relativity diagram.
general relativity definition in physics.
derivation of general relativity.
general relativity examples.
general relativity equation explained.
general relativity einstein paper.
general relativity equation derivation.
equation of general relativity.
einstein paper on general relativity.
einstein 1916 paper on general relativity.
general relativity field equations.
general relativity full equation.
field equations of general relativity.
formula for general relativity.
feynman general relativity.
general relativity gravity.
general relativity graviton lance.
general relativity geodesic.
general relativity geometry.
general relativity geodesic equation.
general relativity vs special relativity.
general relativity theory.
general relativity time dilation.
general relativity history.
general relativity homework solutions.
general relativity hilbert.
general relativity hamiltonian.
what is general relativity.
history of general relativity.
how did einstein discover general relativity.
general relativity in black holes.
general relativity inertial frame.

The quantum internet would be a lot easier to build if we could use existing telecommunications technologies and infrastructure. Over the past few years, researchers have discovered defects in silicon—a ubiquitous semiconductor material—that could be used to send and store quantum information over widely used telecommunications wavelengths. Could these defects in silicon be the best choice among all the promising candidates to host qubits for quantum communications?

Spin-orbit torque effects involve the transfer of angular momentum between a spin current and a magnetic layer mediated by the exchange interaction between conduction and localized electron.

Measuring these effects in magnetic materials continues to be a very active area of interest in spintronics…


Electrons have an , the so-called spin, which means that they can align themselves along a , much like a compass needle. In addition to the electric charge of electrons, which determines their behavior in electronic circuits, their spin is increasingly used for storing and processing data.

Already, one can buy MRAM memory elements (magnetic random access memories), in which information is stored in very small but still classical magnets—that is, containing very many . The MRAMs are based on currents of electrons with spins aligned in parallel that can change the magnetization at a particular point in a material.

Learn more about quantum computing on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Quantum computing, so the fairy tale goes, is the next big thing in technology. News has popped up time and time again noting major advancements in the field, but the latest statement from company D-Wave had people scratching their heads. Are quantum computers really the next big thing? Who’s at the forefront of the field now? Let’s have a look.

Paper: https://arxiv.org/abs/2406.01743v1

🤓 Check out my new quiz app ➜ http://quizwithit.com/

A joint research team has unveiled a new topological insulator (TI), a unique state of matter that differs from conventional metals, insulators, and semiconductors. Unlike most known TIs, which are either three-or two-dimensional, this TI is one-dimensional. The breakthrough will lead to further developments of qubits and highly efficient solar cells.

Details of the research were published in the journal Nature (“Observation of edge states derived from topological helix chains”).

TIs boast an interior that behaves as an electrical insulator, meaning electrons cannot easily move; Whereas its surface acts as an electrical conductor, with the electrons able to move along the surface.

While investigating how string theory can be used to explain certain physical phenomena, scientists at the Indian Institute of Science (IISc) have stumbled upon on a new series representation for the irrational number π. It provides an easier way to extract π from calculations involved in deciphering processes like the quantum scattering of high-energy particles.