Menu

Blog

Archive for the ‘quantum physics’ category: Page 133

Apr 23, 2024

Manipulating the geometry of the ‘electron universe’ in magnets

Posted by in categories: energy, quantum physics

Researchers at Tohoku University and the Japan Atomic Energy Agency have developed fundamental experiments and theories to manipulate the geometry of the “electron universe,” which describes the structure of electronic quantum states in a manner mathematically similar to the actual universe, within a magnetic material under ambient conditions.

Apr 23, 2024

Quantinuum Quantum Computer using Microsoft’s ‘Logical Quantum Bits’ runs 14,000 Experiments with No Errors

Posted by in categories: computing, quantum physics

A team of computer engineers from quantum computer maker Quantinuum, working with computer scientists from Microsoft, has found a way to greatly reduce errors when running experiments on a quantum computer. The combined group has published a paper describing their work and results on the arXiv preprint server.

Computer scientists have been working for several years to build a truly useful quantum computer that could achieve quantum supremacy. Research has come a long way, most of which has involved adding more qubits.

But such research has been held up by one main problem—quantum computers make a lot of errors. To overcome this problem, researchers have been looking for ways to reduce the number of errors or to correct those that are made before results are produced.

Apr 23, 2024

Witnessing the Birth of Skyrmions

Posted by in categories: computing, particle physics, quantum physics

Using thin layers of chiral nematic liquid crystals, researchers have observed the formation dynamics of skyrmions.

A skyrmion is a topologically stable, vortex-like field configuration that cannot be smoothly morphed to a uniform state [1]. First proposed by physicist Tony Skyrme in 1961 as a model of the nucleon [2], the concept has since been studied in condensed-matter physics and adjacent fields [3]. In particular, skyrmions have cropped up in studies of magnetism [4], Bose-Einstein condensates [5], quantum Hall systems [6], liquid crystals [7], and in other contexts (see, for example, Viewpoint: Water Can Host Topological Waves and Synopsis: Skyrmions Made from Sound Waves). Skyrmions exhibit fascinating properties such as small size, stability, and controllability, which give them great potential for applications in spintronics, data storage, and quantum computing.

Apr 23, 2024

Seeing Collisions in Cold Molecular Clouds

Posted by in category: quantum physics

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests.

Apr 22, 2024

Announcing the birth of QUIONE, a unique analog quantum processor

Posted by in categories: particle physics, quantum physics

Quantum physics requires high-precision sensing techniques to delve deeper into the microscopic properties of materials. From the analog quantum processors that have emerged recently, quantum-gas microscopes have proven to be powerful tools for understanding quantum systems at the atomic level. These devices produce images of quantum gases with very high resolution: They allow individual atoms to be detected.

Apr 22, 2024

Quantum computers take major step forward thanks to simplified laser beam trick

Posted by in categories: computing, quantum physics

I found this on NewsBreak: Quantum computers take major step forward thanks to simplified laser beam trick.

Apr 22, 2024

Steering toward quantum simulation at scale

Posted by in categories: computing, quantum physics

I found this on NewsBreak: Steering toward quantum simulation at scale.


Researchers simulated a key quantum state at one of the largest scales reported, with support from the Quantum Computing User Program, or QCUP, at the Department of Energy’s Oak Ridge National Laboratory.

Apr 22, 2024

Single atoms captured morphing into quantum waves in startling image

Posted by in categories: information science, particle physics, quantum physics

In the 1920s, Erwin Schrödinger wrote an equation that predicts how particles-turned-waves should behave. Now, researchers are perfectly recreating those predictions in the lab.

By Karmela Padavic-Callaghan

Apr 22, 2024

Meet QDEL, the backlight-less display tech that could replace OLED in premium TVs

Posted by in categories: computing, quantum physics

Quantum dots are already moving in the premium display category, particularly through QD-OLED TVs and monitors. The next step could be QDEL, short for “quantum dot electroluminescent,” also known as NanoLED, screens. Not to be confused with the QLED (quantum light emitting diode) tech already available in TVs, QDEL displays don’t have a backlight. Instead, the quantum dots are the light source. The expected result is displays with wider color spaces than today’s QD-OLEDs (quantum dot OLEDs) that are also brighter, more affordable, and resistant to burn-in.

It seems like QDEL is being eyed as one of the most potentially influential developments for consumer displays over the next two years.

If you’re into high-end display tech, QDEL should be on your radar.

Apr 22, 2024

NVIDIA To Collaborate With Japan On Their Cutting-Edge ABCI-Q Quantum Supercomputer

Posted by in categories: quantum physics, robotics/AI, supercomputing

NVIDIA is all set to aid Japan in building the nation’s hybrid quantum supercomputer, fueled by the immense power of its HPC & AI GPUs.

Japan To Rapidly Progressing In Quantum and AI Computing Segments Through Large-Scale Developments With The Help of NVIDIA’s AI & HPC Infrastructure

Nikkei Asia reports that the National Institute of Advanced Industrial and Technology (AIST), Japan, is building a quantum supercomputer to excel in this particular segment for prospects. The new project is called ABCI-Q & will be entirely powered by NVIDIA’s accelerated & quantum computing platforms, hinting towards high-performance and efficiency results out of the system. The Japanese supercomputer will be built in collaboration with Fujitsu as well.