With so much fascinating research going on in quantum science and technology, it’s hard to pick just a handful of highlights. Fun, but hard. Research on entanglement-based imaging and quantum error correction both appear in Physics World’slist of 2024’s top 10 breakthroughs, but beyond that, here are a few other achievements worth remembering as we head into 2025 – the International Year of Quantum Science and Technology.
Quantum sensing
In July, physicists at Germany’s Forschungszentrum Jülich and Korea’s IBS Center for Quantum Nanoscience (QNS) reported that they had fabricated a quantum sensor that can detect the electric and magnetic fields of individual atoms. The sensor consists of a molecule containing an unpaired electron (a molecular spin) that the physicists attached to the tip of a scanning-tunnelling microscope. They then used it to measure the magnetic and electric dipole fields emanating from a single iron atom and a silver dimer on a gold substrate.
A quantum state of light has been successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.
The impressive demonstration by researchers in the US may not help you beam to work to beat the morning traffic, or download your favourite cat videos faster.
Einstein’s theory of general relativity describes the inevitability of singularities, which are obscured by black holes according to Penrose’s cosmic censorship conjecture.
Recent studies indicate that quantum mechanics might reinforce this idea, proposing a quantum Penrose inequality that relates entropy to space-time metrics in the vicinity of black holes.
Superradiance in optical cavities involves atoms emitting light collectively when interacting with cavity photons, a phenomenon not yet observed in free space due to synchronization challenges.
Researchers have used theoretical simulations to probe these effects under various conditions, revealing significant differences in behavior between cavity and free-space systems.
Physicists uncovered a fascinating link between the Large Hadron Collider and quantum computing. They found that top quarks produced at the LHC exhibit a property called “magic,” essential for quantum computation.
This discovery could revolutionize our understanding of quantum mechanics and its applications, bridging the gap between quantum theory and particle physics.
John Von Neumann built a solid framework for quantum mechanics. He also worked in game theory, studied what are now called von Neumann Algebras, and was one of the pioneers of computer science.
CHRONOS-Q tackles the complexity of controlling quantum computers by acting as a translator between classical and quantum systems. It enables efficient control via standard computing devices, features an intuitive interface, and significantly reduces operational barriers, paving the way for broader adoption. Its modular, compact design ensures scalability and suitability for diverse environments, from research labs to mobile quantum setups.
With groundbreaking speed—determining qubit states in under 14 nanoseconds—and customizable firmware, CHRONOS-Q promises cost-effective, future-proof solutions for academia and industry. The startup’s founders, including Professor Rainer Dumke from NTU and CEO Patrick Bore, emphasize the transformative potential of accessible quantum computing for solving global challenges.
Synchronicity!😉 Just a few hours ago I watched a video which stated that the philosopher Henri Bergson argued our linear perception of time limited our ability to appreciate the relationship between time and consciousness.
What if our understanding of time as a linear sequence of events is merely an illusion created by the brain’s processing of reality? Could time itself be an emergent phenomenon, arising from the complex interplay of quantum mechanics, relativity, and consciousness? How might the brain’s multidimensional computations, reflecting patterns found in the universe, reveal a deeper connection between mind and cosmos? Could Quantum AI and Reversible Quantum Computing provide the tools to simulate, manipulate, and even reshape the flow of time, offering practical applications of D-Theory that bridge the gap between theoretical physics and transformative technologies? These profound questions lie at the heart of Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time, 2025 paper and book by Alex M. Vikoulov. D-Theory, also referred to as Quantum Temporal Mechanics, Digital Presentism, and D-Series, challenges conventional views of time as a fixed, universal backdrop to reality and instead redefines it as a dynamic interplay between the mind and the cosmos.
Time, as experienced by humans, is more than a sequence of events dictated by physical laws. It emerges from our awareness of change, a psychological construct shaped by consciousness. Recent advancements in neuroscience, quantum physics, and cognitive science reveal fascinating parallels between the brain and the universe. Studies suggest that neural processes operate in up to 11 dimensions, echoing M-Theory’s depiction of a multiverse with similar dimensionality. These insights hint at a profound structural resemblance, where the brain and the cosmos mirror each other as interconnected systems of information processing.
Quantum Temporal Mechanics goes further, positing that consciousness not only perceives time but actively participates in its manifestation. In quantum theory, the observer plays a pivotal role in collapsing wavefunctions, a process that may extend beyond the microcosm to the fabric of reality itself. Various interpretations of quantum mechanics, such as Quantum Bayesianism and Consciousness Causes Collapse theory, support the idea that the observer’s awareness helps shape how time unfolds. In this framework, the flow of time becomes a participatory phenomenon, where consciousness and the universe co-create the temporal experience.
The implications of this perspective are far-reaching. By placing consciousness at the center of temporal reality, D-Theory suggests that the universe operates as a self-simulating quantum neural network—a vast, intelligent system continuously evolving and self-regulating. Reality itself becomes an active, dynamic process in which every quantum event contributes to the universe’s collective intelligence, much like neurons firing in a biological brain. This conceptualization reimagines the universe as a living, thinking entity, where time, space, and experience are constructs shaped by a universal consciousness.
Users of Google’s Chrome browser can rest easy knowing that their surfing is secure, thanks in part to cryptographer Joppe Bos. He’s coauthor of a quantum-secure encryption algorithm that was adopted as a standard by the U.S. National Institute of Standards and Technology (NIST) in August and is already being implemented in a wide range of technology products, including Chrome.
Rapid advances in quantum computing have stoked fears that future devices may be able to break the encryption used by most modern technology. These approaches to encryption typically rely on mathematical puzzles that are too complex for classical computers to crack. But quantum computers can exploit quantum phenomena like superposition and entanglement to compute these problems much faster, and a powerful enough machine should be able to break current encryption.