Toggle light / dark theme

Heat management at the nanoscale has long been a cornerstone of advanced technological applications, ranging from high-performance electronics to quantum computing. Addressing this critical challenge, we have been deeply intrigued by the emerging field of thermotronics, which focuses on manipulating heat flux in ways analogous to how electronics control electric energy. Among its most promising advancements are quantum thermal diodes, which enable directional heat control, and quantum thermal transistors, which regulate heat flow with precision.

Thermal diodes, much like their electrical counterparts, provide unidirectional heat transfer, allowing heat to flow in one direction while blocking it in the reverse. We find this capability revolutionary for heat management, as it has the potential to transform numerous fields.

For instance, thermal diodes can significantly improve the cooling of high-performance electronics, where is a major bottleneck. They could also enable more efficient energy harvesting by converting into usable energy, contributing to sustainability efforts.

A team of researchers at the University of Birmingham in the United Kingdom has made a significant breakthrough in physics by visualizing the shape of a single photon for the first time. This achievement was facilitated by an innovative computer model that simplifies the complex interaction between light and matter, a major challenge in the fields of physics and quantum mechanics.

Photons, the particles of light, have long captivated scientists. Since their discovery, it has been proven that light behaves both as a wave and a particle, a phenomenon known as wave-particle duality. This concept, which took centuries to be accepted, has been pivotal for the advancement of quantum mechanics, the branch of physics that studies subatomic interactions.

Photons are central to many phenomena, including lighting, telecommunications, and even touchscreen technology. However, despite their significance, the precise nature of their shape remained unknown until this team of researchers discovered a new way to visualize them.

The future of technology often feels like science fiction, and a recent conversation between Sundar Pichai, CEO of Google, and Elon Musk of SpaceX proved just that. With Google unveiling its groundbreaking quantum chip Willow, a bold idea was floated—launching quantum computers into space. This visionary concept could not only transform quantum computing but also push the boundaries of modern science as we know it.

Quantum computing has long promised to solve problems far beyond the reach of traditional computers, and Google’s Willow chip seems to be delivering on that vision. In a recent demonstration, the chip completed a complex calculation in just five minutes—a task that would take classical supercomputers billions of years.

Google’s researchers describe this milestone as exceeding the known scales of physics, potentially unlocking groundbreaking possibilities in scientific research and technological development. But despite its promise, the field of quantum computing faces significant challenges.

What lies ahead in the aftermath of the Technological Singularity? Could the latest scientific breakthroughs refine our theological understanding? Do we live in a simulated multiverse? Are we alone in the universe? Can we achieve cybernetic immortality? When and by what means might we transcend our human condition? These profound inquiries are at the core of this enlightening volume.

#Theogenesis #CyberneticTheoryofMind #posthumanism #consciousness #evolution #cybernetics #theosophy #futurism #SyntellectHypothesis #PhilosophyofMind #QuantumCosmology #ComputationalPhysics #PressRelease #NewBookRelease #AudibleAudiobook #AmazonKindle


Ecstadelic Media Group releases THEOGENESIS: Transdimensional Propagation & Universal Expansion, The Cybernetic Theory of Mind series by Alex M. Vikoulov as an Audible audiobook in addition to a previously released Kindle eBook (Press Release, Burlingame, CA, USA, December 21, 2024 07.17 AM PST)

A persistent challenge in quantum research has been overcome by scientists at the University of Copenhagen in collaboration with Ruhr University Bochum. They have successfully achieved control over two quantum light sources simultaneously—a feat previously limited to just one.

This breakthrough might appear modest to those outside the realm of quantum mechanics, but it marks a pivotal moment in the field. By enabling the creation of quantum mechanical entanglement, this advancement opens the door to transformative commercial technologies.

Northwestern University engineers have achieved quantum teleportation over fiber optic cables already carrying Internet traffic, an advance that could simplify the infrastructure needed for quantum computing and advanced sensing technologies, the university is reporting.

The study, published in Optica, demonstrates that quantum communication can coexist with classical Internet signals in the same cable.

“This is incredibly exciting because nobody thought it was possible,” said Prem Kumar, an electrical engineering professor at Northwestern and the study’s lead researcher. “Our work shows a path towards next-generation quantum and classical networks sharing a unified fiber optic infrastructure. Basically, it opens the door to pushing quantum communications to the next level.”

Northwestern University engineers have successfully demonstrated quantum teleportation over fiber optic cables actively carrying Internet traffic, marking a significant step toward practical quantum communication networks that could use existing infrastructure.

Published in Optica | Estimated reading time: 4 minutes

“This is incredibly exciting because nobody thought it was possible,” said Northwestern’s Prem Kumar, who led the study. “Our work shows a path towards next-generation quantum and classical networks sharing a unified fiber optic infrastructure. Basically, it opens the door to pushing quantum communications to the next level.”

Out the free AMD loaner offer. Test the Ryzen PRO laptops yourself and experience the benefits they can bring to your business:
https://tinyurl.com/222dzww9

The Paper:
Indium Selenide breakthrough ➜ https://www.nature.com/articles/s41586-024-08156-8

Timestamps.
00:00 — New Semiconductor.
04:26 — How it works.
07:23 — Outlook and Alternatives.
11:30 — Top 5 Technologies of 2024

The videos I mentioned:
1. Probabilistic Computing https://youtu.be/hJUHrrihzOQ
2. First Functional Graphene Chip https://youtu.be/wGzBuspS9JI?si=saNoFiCw63B5BhPr.
3. Photonic Chip: https://youtu.be/TJ8vywX9asU
4. Quantum Computing: https://youtu.be/eINcrZGDQD0
5. AI: https://youtu.be/WeYM3dn_XvM

Thumbnail image credit: Akanksha Jain.

My course on Technology and Investing ➜ https://www.anastasiintech.com/course.