Toggle light / dark theme

Layered hybrid perovskites show diverse physical properties and exceptional functionality; however, from a materials science viewpoint, the co-existence of lattice order and structural disorder can hinder the understanding of such materials. Lattice dynamics can be affected by dimensional engineering of inorganic frameworks and interactions with molecular moieties in a process that remains unknown.

To address this problem, Zhuquan Zhang and a team of scientists in chemistry and physics at the University of Pennsylvania, University of Texas, Austin, and the Massachusetts Institute of Technology, U.S., used a combination of spontaneous Raman scattering, terahertz spectroscopy and molecular dynamics simulations.

The research outcomes revealed how the in and out of equilibrium provided unexpected observables to differentiate single-and double-layered perovskites. The study is published in Science Advances.

Researchers from Queen Mary University of London have made a discovery that could change our understanding of the universe. In their study published on August 23 in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

After over a decade of observations of pulsars, astronomers could finally tease out the gravitational wave background of the Universe, the combined signal from merging supermassive black holes. But it was just the general presence of mergers, not specific events. A new paper proposes that the same pulsars could next be used to detect the gravitational waves from individual merging supermassive black holes. The more nearby pulsars astronomers can find, the more accurate their measurements will become.

A team of physicists and geologists at CEA DAM-DIF and Universit´e Paris-Saclay, working with a colleague from ESRF, BP220, F-38043 Grenoble Cedex and another from the European Synchrotron Radiation Facility, has succeeded in synthesizing a single-crystalline iron in a form that iron has in the Earth’s core.

In their published in the journal Physical Review Letters, the group describes how they used an experimental approach to synthesize pure single-crystalline ε-iron and possible uses for the material.

In trying to understand Earth’s internal composition, scientists have had to rely mostly on seismological data. Such studies have led scientists to believe that the core is solid and that it is surrounded by liquid. But questions have remained. For example, back in the 1980s, studies revealed that seismic waves travel faster through the Earth when traveling pole to pole versed equator to equator, and no one could explain why.

Artificial General Intelligence (AGI) is a term for Artificial Intelligence systems that meet or exceed human performance on the broad range of tasks that humans are capable of performing. There are benefits and downsides to AGI. On the upside, AGIs can do most of the labor that consume a vast amount of humanity’s time and energy. AGI can herald a utopia where no one has wants that cannot be fulfilled. AGI can also result in an unbalanced situation where one (or a few) companies dominate the economy, exacerbating the existing dichotomy between the top 1% and the rest of humankind. Beyond that, the argument goes, a super-intelligent AGI could find it beneficial to enslave humans for its own purposes, or exterminate humans so as to not compete for resources. One hypothetical scenario is that an AGI that is smarter than humans can simply design a better AGI, which can, in turn, design an even better AGI, leading to something called hard take-off and the singularity.

I do not know of any theory that claims that AGI or the singularity is impossible. However, I am generally skeptical of arguments that Large Language Models such the GPT series (GPT-2, GPT-3, GPT-4, GPT-X) are on the pathway to AGI. This article will attempt to explain why I believe that to be the case, and what I think is missing should humanity (or members of the human race) so choose to try to achieve AGI. I will also try to convey a sense for why it is easy to talk about the so-called “recipe for AGI” in the abstract but why physics itself will prevent any sudden and unexpected leap from where we are now to AGI or super-AGI.

To achieve AGI it seems likely we will need one or more of the following:

The so-called superconducting (SC) diode effect is an interesting nonreciprocal phenomenon, occurring when a material is SC in one direction and resistive in the other. This effect has been the focus of numerous physics studies, as its observation and reliable control in different materials could enable the future development of new integrated circuits.

Researchers at RIKEN and other institutes in Japan and the United States recently observed the SC diode effect in a newly developed device comprised of two coherently coupled Josephson junctions. Their paper, published in Nature Physics, could guide the engineering of promising technologies based on coupled Josephson junctions.

“We experimentally studied nonlocal Josephson effect, which is a characteristic SC transport in the coherently coupled Josephson junctions (JJs), inspired by a previous theoretical paper published in NanoLetters,” Sadashige Matsuo, one of the researchers who carried out the study, told Phys.org.