Toggle light / dark theme

The expansion of the universe at some stage of evolution is well described by the Friedmann model. It was derived from general relativity a hundred years ago, but it is still considered one of the most important and relevant cosmological models.

RUDN University astrophysicists have now proven the theoretical possibility of the existence of traversable wormholes in the Friedmann universe. The research is published in the journal Universe.

“A wormhole is a type of highly curved geometry. It resembles a tunnel either between distant regions of the same universe or between different universes. Such structures were first discussed in the framework of solutions to the gravitational field equations a hundred years ago. But the wormholes considered then turned out to be non-traversable even for photons—they could not move from one ‘end of the tunnel’ to the other, not to mention going back,” said Kirill Bronnikov, doctor of physical and , professor of RUDN University.

Can the intrinsic physics of multicomponent systems show neural network like #Computation? A new study shows how molecules draw on the rules of #physics to perform computations similar to neural networks:


Examination of nucleation during self-assembly of multicomponent structures illustrates how ubiquitous molecular phenomena inherently classify high-dimensional patterns of concentrations in a manner similar to neural network computation.

The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine — Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

In the quest to understand the potential for life beyond Earth, researchers are widening their search to encompass not only biological markers, but also technological ones. While astrobiologists have long recognized the importance of oxygen for life as we know it, oxygen could also be a key to unlocking advanced technology on a planetary scale.

In a new perspective published in Nature Astronomy, Adam Frank, the Helen F. and Fred H. Gowen Professor of Physics and Astronomy at the University of Rochester and the author of The Little Book of Aliens (Harper, 2023), and Amedeo Balbi, an associate professor of astronomy and astrophysics at the University of Roma Tor Vergata, Italy, outline the links between and the potential rise of advanced technology on distant .

“We are ready to find signatures of life on alien worlds,” Frank says. “But how do the conditions on a planet tell us about the possibilities for intelligent, technology-producing life?”

When Isaac Newton inscribed onto parchment his now-famed laws of motion in 1,687, he could have only hoped we’d be discussing them three centuries later.

Writing in Latin, Newton outlined three universal principles describing how the motion of objects is governed in our Universe, which have been translated, transcribed, discussed and debated at length.

But according to a philosopher of language and mathematics, we might have been interpreting Newton’s precise wording of his first law of motion slightly wrong all along.

Summary: A groundbreaking study by physicists and neuroscientists reveals that the connectivity among neurons stems from universal networking principles, not just biological specifics.

Analyzing various model organisms, researchers found a consistent “heavy-tailed” distribution of neural connections, guided by Hebbian dynamics, indicating that neuron connectivity relies on general network organization.

This discovery, transcending biology, potentially applies to non-biological networks like social interactions, offering insights into the fundamental nature of networking.

Just like a book can’t be judged by its cover, a material can’t always be judged by its surface. But, for an elusive conjectured class of materials, physicists have now shown that the surface previously thought to be “featureless” holds an unmistakable signature that could lead to the first definitive observation.

Higher-order , or HOTIs, have attracted attention for their ability to conduct electricity along one-dimensional lines on their surfaces, but this property is quite difficult to experimentally distinguish from other effects. By instead studying the interiors of these materials from a , a team of physicists has identified a signature that is unique to HOTIs that can determine how light reflects from their surfaces.

As the team reports in the journal Nature Communications, this property could be used to experimentally confirm the existence of such topological states in real materials.

It’s not every day astronomers say, “What is that?” After all, most observed astronomical phenomena are known: stars, planets, black holes and galaxies. But in 2019 the newly completed ASKAP (Australian Square Kilometer Array Pathfinder) telescope picked up something no one had ever seen before: radio wave circles so large they contained entire galaxies in their centers.

As the astrophysics community tried to determine what these circles were, they also wanted to know why the circles were. Now a team led by University of California San Diego Professor of Astronomy and Astrophysics Alison Coil believes they may have found the answer: the circles are shells formed by outflowing galactic winds, possibly from massive exploding stars known as supernovae. Their work is published in Nature.

Coil and her collaborators have been studying massive “starburst” galaxies that can drive these ultra-fast outflowing winds. Starburst galaxies have an exceptionally high rate of star formation. When stars die and explode, they expel gas from the star and its surroundings back into interstellar space. If enough stars explode near each other at the same time, the force of these explosions can push the gas out of the galaxy itself into outflowing winds, which can travel at up to 2,000 kilometers/second.