Toggle light / dark theme

The core theory, weak vs. strong emergence, micro-reductionism, and Sean Carroll’s skeptical argument against everything. Is Dr. Carroll correct in holding that physics has ruled out the afterlife, an immaterial soul, fundamental consciousness, and parapsychology?

Linktree https://linktr.ee/emersongreen.

LINKS

Sean Carroll speaking to the Freedom From Religion Foundation • Sean Carroll: Has Science Refuted Rel…

Philip Goff: Is physics different in the brain?

Papers:

@NVIDIAOmniverse is a development platform for virtual world simulation, combining real-time physically based rendering, physics simulation, and generative AI technologies.

In Omniverse, robots can learn to be robots – minimizing the sim-to-real gap, and maximizing the transfer of learned behavior.

Building robots with generative physical AI requires three computers:

- NVIDIA AI supercomputers to train the models.
- NVIDIA Jetson Orin, and next generation Jetson Thor robotics supercomputer, to run the models.
- And NVIDIA Omniverse, where robots can learn and refine their skills in simulated worlds.

Read the press release.

#OpenUSD #Robotics #COMPUTEX2024 #IsaacSim

Is it possible that time is real, and that the laws of physics are not fixed? Lee Smolin, A C Grayling, Gillian Tett, and Bronwen Maddox explore the implications of such a profound re-think of the natural and social sciences, and consider how it might impact the way we think about surviving the future.

Listen to the podcast of the full event including audience Q\&A: http://www.thersa.org/__data/assets/f

Follow the RSA on Twitter: / thersaorg.
Like the RSA on Facebook: / thersaorg.

Our events are made possible with the support of our Fellowship. Support us by donating or applying to become a Fellow.

Donate: http://www.thersa.org/support-the-rsa.
Become a Fellow: http://www.thersa.org/fellowship/apply

It is likely that a theory of everything will ultimately require massive collaboration to be solved. Ironically, this may be a job for the older physicists, despite the warnings of Eddington and others. Francis Crick dedicated his attention to trying to solve the problem of consciousness in his later years, albeit without success.

We need collaboration. But we may be looking at the prospect of a theory of everything only coming from those who have accomplished so much they can afford the potential embarrassment and will be given the benefit of the doubt. This hardly stirs the enthusiasm of the vibrant, young minds that may otherwise tackle the problem.

In trying to solve the ultimate problem, we may have inadvertently created a monster. Our academic framework for research progression is not conducive to it, and history has presented an unkind picture of what happens to those who try.

Are dark matter and dark energy stable and constant? Since we don’t understand their true physical nature, we can’t be sure. But astronomers can see if they vary depending on which direction in space they look. This is a test of whether the universe is lopsided or the same everywhere (the physics term for this is isotropic). It turns out that the amount of dark matter surrounding galaxies is the same in every direction, and the strength of dark energy is also the same in every direction.

To see whether the influence of dark matter and dark energy has changed over cosmic time, astronomers look deep into space. Distant light is old light, so telescopes act as time machines, probing billions of years into the past. By measuring the redshift and brightness of distant objects, astronomers map out the expansion history of the universe. Dark matter dominated for most of that history since the Big Bang. That’s because when the universe was smaller, the gravity exerted by dark matter was stronger, while the force exerted by dark energy has stayed the same. Now is the only time in the entire history of the universe when the two entities’ influences are about equal. In the future, the effects of dark energy will increasingly dominate, and the universe will accelerate forever.

Take courses in science, computer science, and mathematics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

The rate at which the universe is currently expanding is known as the Hubble Rate. In recent years, different measurements have given different results for the Hubble rate, a discrepancy between theory and observation that’s been called the “Hubble tension”. Now, a team of astrophysicists claims the Hubble tension is gone and it’s the fault of supernovae data. Let’s have a look.

Paper: https://iopscience.iop.org/article/10

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #cosmology

Our is capable of demonstrating high spectral resolution and accurate reconstruction of full-Stokes polarization states in both theoretical and experimental settings. Precision detection of high-dimensional information by our photodetector, such as a two-color laser field with different polarization states or broadband reflection from a gold interface exhibiting varying states, is achieved beyond the capabilities of commercial polarimeter and spectrometer.

Additionally, this approach can be extended to imaging applications by sandwiching the film with a commercial microlens array and sensor array to realize ultra-compact high-dimensional imager, said Assistant Professor Chunqi Jin from the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences.

Looking ahead, Prof. Wei Li envisions that ultra-broadband detection can be achieved by integrating broadband commercial photodetectors; the detection resolution can be further improved by using , metasurfaces, and two-dimensional materials instead of existing thin film schemes; and the detection capability can be stepped up in higher dimensions by integrating functionalities such as , and distance measurement.