Toggle light / dark theme

My paper “New Evidence, Conditions, Instruments & Experiments for Gravitational Theories” was finally published by the Journal of Modern Physics, Vol. 8A, 2013. That is today Aug 26, 2013.

Over the last several years I had been compiling a list of inconsistencies in modern contemporary physics. This paper documents 12 inconsistencies. If I’m correct there will sooner or later, be a massive rewrite of modern physical theories, because I do not just criticize contemporary theories but critique them, i.e. provide positive suggestions based on empirical data, on how our theories need to be modified.

The upshot of all this is that I was able to propose two original, new experiments, never before contemplated in physics journals. Both involve new experimental devices, and one is so radically new that it is unthinkable. This is the gravity wave *telescope*.

The new physics lends itself to a new and different forms of weaponizations achievable within the next few decades, with technologies *not* predicted in science fiction. How about that?

I have deliberately left this weaponization part vague because I want to focus on the propulsion technologies. Definitely not something string or quantum-gravity theories can even broach.

We will achieve interstellar travel in my lifetime, and my paper points to where to research this new physics and new technologies.

Paper Details:

Title: New Evidence, Conditions, Instruments & Experiments for Gravitational Theories

Author: Benjamin T Solomon

Journal: Journal of Modern Physics, 2013, Vol 8A

Journal Link (2013, Vol 8A): http://www.scirp.org/journal/JMP/

Paper Links: http://www.scirp.org/journal/PaperDownload.aspx?paperID=36276

Notes: Down load count is displayed at the paper link on the journal web page, so you can see how many people are interested in this topic.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Is there an error in the following 6-point result?

When looking from the height of a GPS satellite down onto earth, you will notice six Einstein effects:
E1: The clocks worn by the people down there tick slower by Einstein’s gravitational redshift factor
E2: The photons arriving up here from down there have correspondingly less energy
E3: These photons had their lower energy on departure already, despite appearing normal locally down there
E4: All masses down there are reduced in their mass-energy content by the redshift factor, despite appearing normal locally down there
E5: All charges down there are reduced in their charge by the redshift factor, despite appearing normal locally down there
E6: All objects down there are linearly increased in their size by the reciprocal redshift factor, despite appearing normal locally down there

Background: Points E1, E2 are accepted since Einstein first proposed them in 1907. E3 was described by Julian Schwinger in his book “Einstein’s Legacy” of 1986 (on page 142). E4 follows from quantum-electrodynamics (“creation-annihilation operator”). E5 follows from the universal rest mass-to-charge ratio; it is in the literature since 2008 (see http://www.academicjournals.org/ajmcsr/PDF/pdf2012/Feb/9%20Feb/Rossler.pdf ). E6 follows from the “Bohr radius formula” of quantum mechanics; it was first mentioned in a PhD thesis submitted in 2005 (quoted in http://www.nonlinearscience.com/paper.php?pid=0000000148 ).
So far, no specialist in general relativity agrees publicly to the three new Einstein effects E4,E5,E6, but no one objects publicly, either. One reason for the silence is that E4,E5,E6 have yet to be incorporated into general relativity (a mammoth task). The main reason, however, is that E5 and E6 affect the safety of the LHC experiment at CERN. This is why your help is vitally needed to either smash or confirm points E4-E6.

Science depends on lonely pebble-searching as Newton said and Einstein practiced. Close to a pebble found, there always lie equally shiny others according to Maxwell. I look forward to the reader kindly searching around one or the other of the 25

1) Cryodynamics – sister discipline to thermodynamics – exists, being valid for attractive inter-particle potentials

2) Concentric electron beams will cool hot spots in the ITER via cryodynamics (with A. Sanayei and I. Zelinka)

3) Spiral chaos (stimulated by Art Winfree)

4) Hyperchaos

5) Boltzmann’s “hypothesis of molecular chaos” deterministically proved (using smooth Sinai disks)

6) Aging equation (with R. Rossler and P.E. Kloeden)

7) Gödel incompleteness explained as a limit to the travelling salesman problem (with G. Andreeva)

8) “Travelling-salesman-with-alarmclocks problem” (similarly Eric L. Charnov’s “optimal foraging problem”)

9) Brain equation (finding a locally optimal solution to the TSWAP)

10) Brain-life is independent from metabolic life

11) Superior intelligence, hardware-wise, of the orangutan (implicit in aging equation)

12) Causal therapy of autism, by inducing a Rosen-type epigenetic function change (approved by Gregory Bateson)

13) “Person attractor” (name courtesy Detlev Linke), confirming Lévinas exteriority

14) “Assignment conditions” (A.C.) complement Newton’s “initial conditions” (I.C.) and “laws”

15) Chemical evolution represents an Erdös growing automaton (similarly S. Kauffman, J. Cohen, K. Matsuno)

16) B-N-B-N-, rather than C-C-C-, based life predictable inside Jupiter (with A.P. Schmidt)

17) Jumping identities of transfinitely-indistinguishable particles (generate classical Gibbs-Pauli-Primas cell)

18) Micro time reversals in classical observer explain the fullfledged doubly occupied Pauli cell (with Michael Conrad)

19) Observer-centered causal (“endo”) explanation of Planck’s constant h

20) Endo explanation of Einstein’s constant c (with R. Rossler and P. Weibel)

21) Noether’s theorem, applied to Einstein equivalence principle, implies global constancy of c

22) Black-hole theory updated: nonevaporation, unchargedness, Reeb foliation (with D. Fröhlich)

23) Metrology revised due to new constants of nature (Telemach theorem)

24) Everett theory predicted to win out against Copenhagen interpretation (in Zeilinger’s forthcoming relativistic Bell experiment)

25) Neocosmology (based on cryodynamics)

————————-

Recent discussions on the properties of micro-black-holes threw open sufficient question to reignite some interest in the subject (pardon to those exhausted of reading on the subject here at the Lifeboat Foundation). A claim made by physicists at the University of Innsbruck in Austria, that a new attractive force arises from black-body radiation [1] makes one speculate if a similar effect could result from hawking radiation theorized to be emitted from micro-black-holes. An unlikely scenario due to the very different nature supposed on hawking radiation and black-body radiation, but a curious thought none-the-less. If a light component of hawking radiation could replicate this net attractive force, accepted accretion and radiation rates could be revised to consider such new additional forces hypothesized.

Not so fast — Even if such a new force did take effect in these scenarios, one would expect such to have negligible impact on safety assurances. Official estimated accretion rates are many many orders of magnitude lower than estimated radiation rates — and are estimates which concur with observational evidence in the longevity of white-dwarf stars.

That is not to conclude such new forces are necessary to continue debate. Certain old disputed parameter ranges suggest different accretion rates relative to radiative rates which could bridge that vast breadth between such estimates, theorizing catastrophic outcomes [3] are not necessarily refuted by safety assurances — least on white-dwarf longevity.

Indeed a more pertinent point, that if equilibrium could manifest between radiation and accretion rates, micro-black-holes trapped in Earth’s gravitation could become persistent heat engines with considerable flux [2] to cause environmental concern in planetary heating.

Meanwhile, that stalwart safety assurance on micro-black-hole accretion risks, the longevity of white dwarf stars, finds new argument where the law of angular momentum conservation is considered as a significant factor in negating the G&M [4] calculated stopping distances of naturally occurring micro-black-holes on white dwarf stars due to it enforcing an immediate disengagement on striking quarks at such near-luminal speeds — this unlike LHC produced micro-black-holes, it is argued, which enjoy a 30,000 times longer interaction time [5].

One does not feel motivated to run for ‘end is nigh’ placards in such fringe discussions, but one can surmise that discussion on such topics of LHC safety assurance are far from the end of their rope in certain circles. Thank you to those involved for their continued discussions.

———————————————–

[1] Attractive Optical Forces from Blackbody Radiation — Sonnleitner, Ritsche-Marte, Ritsch, 2013. ( http://prl.aps.org/abstract/PRL/v111/i2/e023601 )
[2] Terrestrial Flux of Hypothetical Stable MBH Produced in Colliders relative to Natural CR Exposure — 2012. ( http://vixra.org/pdf/1203.0055v2.pdf )
[3] Potential catastrophic risk from metastable quantum-black holes produced at particle colliders — R. Plaga, 2008/2009. ( http://arxiv.org/pdf/0808.1415v3.pdf )
[4] Astrophysical implications of hypothetical stable TeV-scale black holes — Giddings, Mangano — 2008 ( http://arxiv.org/abs/0806.3381 )
[5] Eintein’s Equivalence Principle, C-Global, and the Widely Ignored Factor 30,000 — O.E Rossler, 2013. ( http://eujournal.org/index.php/esj/article/view/1577/1583 )

Short Summary of a New Idea: Cryodynamics

Otto E. Rossler, Faculty of Science, University of Tubingen, Germany

Abstract

A brief history and description of cryodynamics is offered. While still in its infancy, it is already strong in basic findings and predictions. It is a classical science the quantum version of which still waits to be formulated. It is highly promising technologically. A new fundamental science is a rare event in history. The basic insight is to picture randomly moving hyperbolic tree trunks in Sinai’s “rolling tennis ball in an orchard game” (Harry Thomas’ term), but flipped upside down so that the trees are hollow funnels pointing downwards.

- — - -

Cryodynamics is a classical field which appears to be new. It is a sister discipline to thermodynamics and automatically has as many implications as the latter despite its belated discovery. So far but a few features have been elaborated. For example, its deterministic entropy function is identical to the Sackur-Tetrode equation as given by Diebner, but with inverted sign (“ectropy”). If confirmed it allows for a combined entropic and ectropic model of the universe. Then all direction-of-time bound models of the universe lose their validity. The problem of black hole recycling which poses itself in this case is still unsolved in spite of Hawking’s early stab.

Held against this big scenario, what is presently on hand is still limited. It is the discovery that if you subject a fast-moving low-energy classical particle to successive grazing-type encounters with attractive, rich-in-kinetic-energy particles, then the low-energy particle loses kinetic energy on average to the high-energy ones (“energetic capitalism”). This is very unexpected and paradoxical. Nevertheless the idea goes back to Zwicky in 1929 and Chandrasekhar in 1943, although it was not elaborated at the time.

The “miracle” is that if you invert the direction of time, the opposite behavior is implicit. All of the conceptual problems of thermodynamics are re-encountered. The second major feature is that the new phenomenon is numerically elusive for stiffness reasons. While the increasing disorder of entropy increase, valid in the repulsive case is a numerically stable feature in statistical thermodynamics, the decreasing order of ectropy increase, valid in the attractive case is not numerically stable. Very minor numerical deviations suffice to destroy the on-going decrease of entropy. This explains why in the thousands of multi-particle simulations done so far in galactic dynamics, to mention only this subcase, the phenomenon was never encountered numerically so far.

Another reason for the lack of resonance up until now is the fact that thermodynamics has always been understood as a statistical theory, with probability-theoretic axioms employed to describe it. While this is not false, it eschews the underlying deterministic, chaos-theoretic mechanism. The thereby incurred intrinsic inaccuracy did not cause much damage in thermodynamics so far, but cannot be transported over to cryodynamics. Cryodynamics does not emerge without prior acknowledgement of deterministic chaos as its root. (This new fact strongly constrains the accuracy of quantum mechanics — backwards in time — which is quite unexpected.)

Let me explain the simplest example which also worked numerically in the first two successful simulations so far. A fast-moving low-mass particle is subjected to encounters with a Newtonian potential trough into which it dips-in and then gets out again. If the trough is periodically or nonperiodically approaching and receding (modulated in its depth), a net effect results: a loss of energy of the traversing fast particle. If we invert time after a while, the exact opposite occurs up to the initial point, to from then on give way to the previous behavior, but now in the opposite direction of time.

The best way to understand all this is to invert the sign of the potentials. Then the opposite phenomenon, familiar from statistical thermodynamics, occurs: The periodically modulated trough is now replaced by a periodically modulated mound or tree. It is obvious that the recurrent unequal increases and decreases in the height of the hyperbolic mound amount to a qualitatively different effect in their sums.

To see this, think of a ball running frictionlessly through a forest of (at first fixed) trees with softly rising features. Then the ball will from time to time climb up a little and come down again – without losing or gaining in its net kinetic energy. Now let the trees be moving slowly at random (or periodically). Then the two cases – of the tree approaching the path of the up-climbing particle or receding from it – have different strengths (different mean heights). This explains dissipation. On inverting time after a while, the net gain becomes a net loss for the moving particle — until the initial condition is re-arrived at. Then the gaining streak sets in again, now in the new direction of time.

When we leave the repulsive case by inverting the tree stems into mirror-symmetric troughs, then the opposite thing happens to a ball running on the surface of this inverted landscape. This is the new phenomenon of cryodynamics, proved to the mental eye.

After this geometric proof, the numerical challenge clearly is on – especially so after the successful two cases published by Klaus Sonnleitner and Ramis Movassagh, respectively. The new science is waiting to be put on a broader computational basis.

Why is this important? The new cosmology that is implied clearly is not a sufficient motivation, given the fact that most everyone is happy with the old paradigm. So all that remains as a convincing reason for further research is an economically challenging application.

Such an application could be provided by the ITER, a hot-fusion reactor based on the Tokamak design: a torus-shaped, millions-of-degrees hot plasma that is magnetically confined in a metal ring. The plasma must not touch the (necessarily much colder) confining walls. This design is intrinsically unstable dynamically: The plasma tends to break out from the toroidal magnetic confinement to suddenly touch the wall somewhere to let the overall temperature collapse. No working prototype exists for decades. The current hope that following another quarter of a century, the machine will work, is being upheld with many billions of euros already sunk-in. Here, cryodynamics can be of help in principle. The paradoxical option: apply a heat bath of even hotter attractive particles at the location of the budding instability. Then these hotter attractive particles – like the inverted tree trunks – will cool the too hot nucleons, thus curbing the budding local protrusion.

“Cooling by hotter attractive particles” is the essence of cryodynamics. The hotter particles could be electrons shot-in concentrically into the budding hot spot. This is no problem in principle since even very much hotter electrons are easy to generate in small, dirigible-beam accelerators.

The idea was published under the title “Is hot fusion made feasible by the discovery of Cryodynamics?” in Advances in Intelligent Systems and Computing, Volume 192, pp. 1–4, Springer-Verlag 2013. It can still be patented since no design details were mentioned. This is a very lucrative technological proposal. No country or nation is interested so far nor are the oil companies.

Acknowledgments

Thank you that I was allowed to tell you the whole story in as brief a form as I could. I thank Dan Stein, Eric Klien, Christophe Letellier, Nico Heller, Heinz Clement and Jozsef Fortagh for discussions. Paper presented at the “CQ Colloquium” of the University of Tubingen on June 28, 2013. For J.O.R. (Submitted to Nature.)

Congratulations Drs. Musha, Pinheiro & Valone on their soon to be published new book.

For those who are interested T. Musha, M.J. Pinheiro and T. Valone (Advanced Science Technology Research Organization, Yokohama, Japan, and others) have a new book that will be published soon:

Book Description: The purpose in writing this book is to give an historical overview of a new challenging field of research, and equip the readers with the mathematical basis of gravitoelectromagnetic theories and their applications to advanced science and technology.
The first chapter introduces the historical background of electrogravity, especially on the Biefeld-Brown effect. The second chapter gives several explanations on the Biefeld-Brown effect and other related phenomena, with a concern on the Einstein’s Unified Field Theory of Gravitation and electromagnetism and gravitational anomaly induced by the massive electrostatic charges of planets. The third chapter is concerned with the electrogravitic effect related to the zero point energy fluctuation in the vacuum, introduced from the standpoint of quantum electrodynamics.
The fourth chapter discusses other electromagnetic gravity control devices including the Heim theory and their applications for space flight. The fifth chapter has shown that the Abraham force is the analogue of the Magnus force, and it thus represents the formation of vortex structures, of electromagnetic nature, in the physical vacuum: the electromagnetotoroid which can generate gravitational field. The sixth chapter deals with the plasma theory of the Universe and the role played by the gravitoelectromagnetic forces generated by the plasma permeating the space between planets. And the last chapter shows the application on advanced aviation systems and future prospects of these technologies.
This is a textbook written for both researchers and professional scientists, which provides the mathematical basis for readers to introduce the basic concept of gravitoelectromagnetic theories and also discusses their application to advanced science and technologies. (Imprint: Novinka)
Publisher’s link:
——————————————Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Mechanics of Gravity Modification

Posted in defense, education, engineering, general relativity, military, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Rocky Mountain chapter of the American Institute of Astronautics & Aeronautics (AIAA) will be having their 2nd Annual Technical Symposium, October 25 2013. The call for papers ends May 31 2013. I would recommend submitting your papers. This conference gives you the opportunity to put your work together in a cohesive manner, get feedback and keep your copyrights, before you write your final papers for journals you will submitting to. A great way to polish your papers.

Here is the link to the call for papers: http://www.iseti.us/pdf/RMAIAA_Call_For_Abstracts_2013-0507.pdf

Here is the link to the conference: http://www.iseti.us/pdf/RMAIAA_General_Advert_2013-0507.pdf

I’ll be presenting 2 papers. The first is a slightly revised version of the presentation I gave at the APS April 2013 conference here in Denver (http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(20…45;15).pdf). The second is titled ‘The Mechanics of Gravity Modification’.

Fabrizio Brocca from Italy wanted to know more about the Ni field shape for a rotating-spinning-disc. Finally, a question from someone who has read my book. This is not easy to explain over email, so I’m presenting the answers to his questions at this conference, as ‘The Mechanics of Gravity Modification’. That way I can reach many more people. Hope you can attend, read the book, and have your questions ready. I’m looking forward to your questions. This is going to be a lively discussion, and we can adjourn off conference.

My intention for using this forum to explain some of my research is straight forward. There will be (if I am correct) more than 100 aerospace companies in attendance, and I am expecting many of them will return to set up engineering programs to reproduce, test and explore gravity modification as a working technology.

Fabrizio Brocca I hope you can make it to Colorado this October, too.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

As long as a recently published proof (European Scientific Journal March 2013 edition vol.9, No.9 ISSN: 1857–7881(Print) e-ISSN 1857–7431) remains unchallenged by the scientific community, this question is not only scientifically sound but also maximally important.

It would be great if this uncommon call for scientific assistance by imaginative readers across the world would find the resonance it deserves . Einstein would be delighted.

I had a great time at APS 2013 held April 13 — 16, 2013. I presented my paper “Empirical Evidence Suggest A Different Gravitational Theory” in track T10, Tuesday afternoon. A copy of the slides is available at this link.

http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(20…45;15).pdf

Have fun.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

The APS April Meeting 2013, Vol. 58 #4 will be held Saturday–Tuesday, April 13–16, 2013; Denver, Colorado.

I am very pleased to announce that my abstract was accepted and I will be presenting “Empirical Evidence Suggest A Need For A Different Gravitational Theory” at this prestigious conference.

For those of you who can make it to Denver, April 13–16, and are interested in alternative gravitational theories, lets meet up.

I am especially interested in physicists and engineers who have the funding to test gravity modification technologies, proposed in my book An Introduction to Gravity Modification.

** Note, APS is the publisher of the most prestigious physics journal in the world, Physical Review Letters. If you remember Robert Nemiroff published his ground breaking findings that quantum foam cannot exists, 3 photons and 7-billion year old gamma ray burst in the Physical Review Letters.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification