Is super asymmetry a thing? And do big physicists really travel economy class?
 
   
   
  In June of 2018 we posted that a team of physicists explored the possibility that the black holes we ‘observe’ in nature are no such thing, but rather some type of exotic compact objects (ECOs) that do not have an event horizon. The scientific collaborations LIGO and Virgo have detected gravitational waves from the fusions of two black holes, inaugurating a new era in the study of the cosmos. But what if those ripples in space-time were produced wormholes that can be traversed to appear in another universe.
“Wormholes do not have an event horizon, but act as a space-time shortcut that can be traversed, a kind of very long throat that takes us to another universe,” says Pablo Bueno from KU Leuven University (Belgium). “The confirmation of echoes in the LIGO or Virgo signals would be a practically irrefutable proof that astrophysical black holes don’t exist. Time will tell if these echoes exist or not. If the result were positive, it would be one of the greatest discoveries in the history of physics.”
“Dark Hearts of the Cosmos” –Dazzling New Mergers of Black Holes and Neutron Stars Announced
 
   
  Gravitational waves, first detected in 2016, offer a new window on the universe, with the potential to tell us about everything from the time following the Big Bang to more recent events in galaxy centers.
And while the billion-dollar Laser Interferometer Gravitational-Wave Observatory (LIGO) detector watches 24/7 for gravitational waves to pass through the Earth, new research shows those waves leave behind plenty of “memories” that could help detect them even after they’ve passed.
“That gravitational waves can leave permanent changes to a detector after the gravitational waves have passed is one of the rather unusual predictions of general relativity,” said doctoral candidate Alexander Grant, lead author of “Persistent Gravitational Wave Observables: General Framework,” published April 26 in Physical Review D.
 
   
  In trying to answer such questions, scientists bump up against the limits of the laws of physics. Existing theories can account for the evolution of the universe from its earliest moments — from a fraction of a second after the Big Bang — but the question of what came before has been among the most vexing in all of science.
“It’s my life’s work to try to answer that question,” University of Toronto physicist Renée Hložek says.
This image represents the evolution of the universe, starting with the Big Bang. The red arrow marks the flow of time.
 
  The stunning emergence of a new type of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer nearly overwhelmed.
 
   
   
  Nearly 8,000 light-years away from Earth, astronomers have discovered a black hole that keeps rapidly swinging out jets of plasma clouds into space, according to a new study.
The black hole, known as V404 Cygni, doesn’t behave like others. The jets shoot out possibly within minutes of each other and in all different directions. And while the researchers admit that black holes are some of the most extreme objects in the universe, this one is different.
“This is one of the most extraordinary black hole systems I’ve ever come across,” study author James Miller-Jones said in a statement. Miller-Jones is also an associate professor at Curtin University’s International Centre for Radio Astronomy Research.