Toggle light / dark theme

The brain-computer interface is coming, and we are so not ready for it

Are you ready?

“if you were the type of geek, growing up, who enjoyed taking apart mechanical things and putting them back together again, who had your own corner of the garage or the basement filled with electronics and parts of electronics that you endlessly reconfigured, who learned to solder before you could ride a bike, your dream job would be at the Intelligent Systems Center of the Applied Physics Laboratory at Johns Hopkins University. Housed in an indistinct, cream-colored building in a part of Maryland where you can still keep a horse in your back yard, the ISC so elevates geekdom that the first thing you see past the receptionist’s desk is a paradise for the kind of person who isn’t just thrilled by gadgets, but who is compelled to understand how they work.”


Then there are the legal questions: Can the cops make you wear one? What if they have a warrant to connect your brain to a computer? How about a judge? Your commanding officer? How do you keep your Google Nest from sending light bulb ads to your brain every time you think the room is too dark?

A wearable device that can decode the voice in your head is a way’s off yet, said Jack Gallant, professor of psychology at University of California, Berkeley and a leading expert in cognitive neuroscience. But he also said, “Science marches on. There’s no fundamental physics reason that someday we’re not going to have a non-invasive brain-machine interface. It’s just a matter of time.

”And we have to manage that eventuality.”

Fish, seaweed inspire slippery surfaces for ships

Long-distance cargo ships lose a significant amount of energy due to fluid friction. Looking to the drag reduction mechanisms employed by aquatic life can provide inspiration on how to improve efficiency.

Fish and seaweed secrete a layer of mucus to create a slippery surface, reducing their friction as they travel through water. A potential way to mimic this is by creating -infused surfaces covered with cavities. As the cavities are continuously filled with the lubricant, a layer is formed over the surface.

Though this method has previously been shown to work, reducing drag by up to 18%, the underlying physics is not fully understood. In the journal Physics of Fluids, researchers from the Korea Advanced Institute of Science and Technology and Pohang University of Science and Technology conducted simulations of this process to help explain the effects.

Physicists discover new magnetoelectric effect

Electricity and magnetism are closely related: Power lines generate a magnetic field, rotating magnets in a generator produce electricity. However, the phenomenon is much more complicated: electrical and magnetic properties of certain materials are also coupled with each other. Electrical properties of some crystals can be influenced by magnetic fields—and vice versa. In this case one speaks of a “magnetoelectric effect.” It plays an important technological role, for example in certain types of sensors or in the search for new concepts of data storage.

A special material was investigated for which, at first glance, no would be expected at all. But careful experiments have now shown that the effect can be observed in this material, it only works completely differently than usual. It can be controlled in a highly sensitive way: Even small changes in the direction of the can switch the of the material to a completely different state.

Physicists who disproved ‘5th force’ win $3 million ‘Breakthrough’ prize

Three physicists won a $3 million Breakthrough prize for proving there is no fifth force (that we know of). And it all started with a series of table-top experiments using cheap equipment.

Eric Adelberger, Jens Gundlach and Blayne Heckel together lead the “Eöt-Wash Group,” which is devoted to precise tests of physical laws. They take their name from the early-1900s physicist Loránd Eötvös and the University of Washington, where they work. These Eöt-Wash researchers got their start in the mid-1980s, using a device known as a “torsion balance” to disprove claims of an undiscovered fifth force in physics. Since then, they’ve used more elaborate versions of the same device to test the true strength of gravity, detect the tug of dark matter in the Milky Way and search for theoretical physical effects like extra dimensions and “axion wind.”

Researchers Find the Origin and Maximum Mass of Massive Black Holes Observed by Gravitational Wave Detectors

Through simulations of a dying star, a team of theoretical physics researchers have found the evolutionary origin and the maximum mass of black holes which are discovered by the detection of gravitational waves as shown in Figure 1.

The exciting detection of gravitational waves with LIGO (laser interferometer gravitational-wave observatory) and VIRGO (Virgo interferometric gravitational-wave antenna) have shown the presence of merging black holes in close binary systems.

Unity in Knowledge: From Ethics and Islam to Exponential Technology and Robotics

Discussing STEM, the future, and transhumanism with an islamic scholar / scientist.


Ira Pastor, ideaXme life sciences ambassador interviews Imam Sheikh Dr. Usama Hasan, PhD, MSc, MA, Fellow of the Royal Astronomical Society and Research Consultant at the Tony Blair Institute For Global Change.

Ira Pastor comments:

Today, on the ideaXme show we are going to segue back towards the fascinating intersection of science and spirituality.

We are joined by Imam Sheikh Dr. Usama Hasan, most recently Senior Researcher and Head of Islamic Studies at Quilliam International, a think tank and worlds first counter-extremism organization, where he was a founding advisor to the organization since 2008.

Monumental Collision of “Impossible” Black Holes Detected for the First Time

The most massive black hole collision ever detected has been directly observed by the LIGO and VIRGO Scientific Collaboration, which includes scientists from The Australian National University (ANU).

The short gravitational wave signal, GW190521, captured by the LIGO and Virgo gravitational wave observatories in the United States and Europe on May 21 last year, came from two highly spinning, mammoth black holes weighing in at a massive 85 times and 66 times the mass of the Sun, respectively.

But that is not the only reason this system is very special. The larger of the two black holes is considered “impossible.” Astronomers predict that stars between 65 – 130 times the mass of the Sun undergo a process called pair instability, resulting in the star being blown apart, leaving nothing behind.

/* */