Toggle light / dark theme

Solved: The mystery of the expansion of the universe

The Earth, solar system, the entire Milky Way and the few thousand galaxies closest to us move in a vast “bubble” that is 250 million light years in diameter, where the average density of matter is half as high as for the rest of the universe. This is the hypothesis advanced by a theoretical physicist from the University of Geneva (UNIGE) to solve a conundrum that has been splitting the scientific community for a decade: At what speed is the universe expanding? Until now, at least two independent calculation methods have arrived at two values that are different by about 10% with a deviation that is statistically irreconcilable. This new approach, which is set out in the journal Physics Letters B, erases this divergence without making use of any “new physics.”

The has been expanding since the Big Bang occurred 13.8 billion years ago—a proposition first made by the Belgian canon and physicist Georges Lemaître (1894−1966), and first demonstrated by Edwin Hubble (1889−1953). The American astronomer discovered in 1929 that every galaxy is pulling away from us, and that the most distant galaxies are moving the most quickly. This suggests that there was a time in the past when all the galaxies were located at the same spot, a time that can only correspond to the Big Bang. This research gave rise to the Hubble-Lemaître law, including the Hubble constant (H0), which denotes the universe’s rate of expansion. The best H0 estimates currently lie around 70 (km/s)/Mpc (meaning that the universe is expanding 70 kilometers a second more quickly every 3.26 million light years). The problem is that there are two conflicting methods of calculation.

Researchers create portable black hole

Essentially from a disposal device to even warp drive hoverboards to even like gravity field control to even like hovering spaceships.


Physicists have created a black hole for light that can fit in your coat pocket. Their device, which measures just 22 centimetres across, can suck up microwave light and convert it into heat.

The hole is the latest clever device to use ‘metamaterials’, specially engineered materials that can bend light in unusual ways. Previously, scientists have used such metamaterials to build ‘invisibility carpets’ and super-clear lenses. This latest black hole was made by Qiang Chen and Tie Jun Cui of Southeast University in Nanjing, China, and is described in a paper on the preprint server ArXiv1.

Black holes are normally too massive to be carried around. The black hole at the centre of the Milky Way, for example, has a mass around 3.6 million times that of the Sun and warps the very space around it. Light that travels too close to it can become trapped forever.

Rare Isaac Newton manuscript discovered in Corsican library

A first-edition copy of Isaac Newton’s groundbreaking book laying out his three laws of motion, which became the foundation for modern physics, has been found at a library on the French island of Corsica.

Vannina Schirinsky-Schikhmatoff, director of conservation at the Fesch public heritage library in Ajaccio, said she discovered the copy of the 17th-century work while studying an index from the library’s founder Lucien Bonaparte—one of Napoleon’s brothers.

“I found the Holy Grail in the main room, hidden in the upper shelves,” she told AFP this week.

Astronomers: Something Is Warping Our Entire Galaxy

Hmmm dark matter perhaps or a still unknown type of exterrestial physics. Much like bootes which in my expert opinion is an alien dimension maybe there are still Easter eggs hidden in the fabric of our universe that can take several lifetimes to understand even with advanced technology understanding may still be like scratching at the ceiling of infinity of understanding but may not be as difficult.


It’s a mystery that’s been puzzling astronomers for years.

The Man Making Rwanda Into a Hub for Physics

Omololu Akin-Ojo was always reluctant to go to the United States. “I felt I could do a lot of things in Africa,” he told me in his office at the new East African Institute for Fundamental Research (EAIFR) in Kigali, Rwanda. “Unfortunately, I was wrong.”

As a university student in his home country of Nigeria in the late 1990s, Akin-Ojo learned to write computer code by hand, without ever having the chance to put the code into a computer. Aware of these limitations, his father, a physicist, encouraged him to apply to doctoral programs abroad. While studying condensed matter physics at the University of Delaware, Akin-Ojo recognized the gulf in teaching and in research opportunities between Nigeria and the U.S.

He realized then that he wanted to stem the brain drain of Africa’s brightest minds. Although he spent the next 14 years working in the U.S. and Europe, he said, “I always knew I was coming back to Africa.” He chose to specialize in theoretical physics, so that the lack of experimental equipment in Nigeria wouldn’t hinder his research when he returned.

Scientists Are Starting to Take Warp Drives Seriously, Especially This One Concept

It’s hard living in a relativistic Universe, where even the nearest stars are so far away and the speed of light is absolute. It is little wonder then why science fiction franchises routinely employ FTL (Faster-than-Light) as a plot device.

Push a button, press a petal, and that fancy drive system – whose workings no one can explain – will send us to another location in space-time.

However, in recent years, the scientific community has become understandably excited and skeptical about claims that a particular concept – the Alcubierre Warp Drive – might actually be feasible.

The Rules of the Flock

The locusts have no king, and yet they all go forth in ranks, noted King Solomon some three thousand years ago. That a multitude of simple creatures could display coherent collective behavior without any leader caused his surprise and amazement, and it has continued to do so for much of our thinking over the following millennia. Caesar’s legions conquered Europe, Napoleon’s armies reached Moscow: We always think of a great commander telling the thoughtless multitudes what to do.

Statistical physics pioneered an opposite view. When a piece of iron is cooled down to a certain temperature (the Curie temperature), the majority of the atoms align their spins, thereby making it magnetic. No atomic general gives any commands; each atom communicates only with its neighbors, and yet there is an overall alignment. It shows us that local microscopic interactions as such can lead to dramatic global behavior, and this realization brought about a revolution in the understanding of swarm behavior.

Some hundred years ago, serious biologists still thought that the coordination of birds in a flock was reached by telepathy, and the synchronized light emission by fireflies in the Asiatic jungle was attributed to faulty observation by the observer. The introduction of physics concepts in biology has to a large extent resolved these puzzles. Flocks of birds are much more like the atoms in iron than they are like the armies of Napoleon, and the fireflies act much like a laser. Collective behavior in the world of living beings is after all not so different from that in the inanimate world.

The fusion of physics concepts and biological observations has proven fruitful for both sides, and the conceptual transfer worked in both directions. For centuries, physics concentrated on simple systems, since these were solvable by the available techniques. Scientists broke up a large system into many simple little ones, which could be handled. Putting them back together then described the large system. At the turn of the last century, Per Bak, a pioneer of the truly new physics of complexity, noted that “the laws of physics are simple, but nature is complex.” If the Big Bang initially produced an ideal gas of primordial particles, how could this eventually lead to the appearance of Per Bak? A living being is more than a set of molecules, and today we study systems in physics which refuse to be decomposed additively into little subsystems.

The understanding of collective behavior of animal societies can perhaps act as a first step in the search for an answer. Today we can simulate a flock of birds on a computer, allowing each bird to move freely, subject to only two social rules: Follow your neighbor, but don’t crowd him. Putting a large number of such simplistic birds on the computer then produces the behavior observed for flocks of real birds. A primitive way to achieve collective behavior is provided by commands of Caesar or Napoleon; a more subtle and more natural way is to allow a many component system to move subject to the simple clear social rules.

A still more dramatic form of collective behavior appears in insect societies. The whole now no longer consists of identical components. Evolution has found it preferable to have different components designed specifically to carry out particular tasks. In an ant colony, we have workers, nannies, soldiers, drones, and a queen. Each individual carries out specific tasks; it is dependent on the others in order to exist, it cannot survive alone. And no matter how good a worker ant is, it will never have children to whom it can pass on its capabilities. All descendants are produced by the queen and the drones. Charles Darwin’s survival of the fittest now takes on a new and unexpected form. It no longer applies to individuals, but rather to the entire collective system. Insect societies thus in a way precede the pattern of modern industrial societies, in which large firms employ different “species” of workers to carry out dedicated tasks. In most human societies, the caste status is not (yet) inherited, and caste transitions are possible. Hopefully, evolution will consider this as dominant.

In any case, human societies have led to one collective feature not paralleled on a comparable level by any animals: we have language. Only the existence of language allows the abstract thinking of humans; we can imagine and talk about the past and the future, the here and the elsewhere. It is probably this more than anything that has allowed humans to take over the entire earth.


/* */