Toggle light / dark theme

Discovering new properties of magnetism that could change our computers

Modern computers use electrons to process information, but this design is starting to reach theoretical limits. However, it could be possible to use magnetism instead and thereby keep up the development of both cheaper and more powerful computers, thanks to work by scientists from the Niels Bohr Institute (NBI) and University of Copenhagen. Their study is published in the journal Nature Communications.

“The function of a computer involves sending electric current through a microchip. While the amount is tiny, the current will not only transport information but also contribute to heating up the chip. When you have a huge number of components tightly packed, the heat becomes a problem. This is one of the reasons why we have reached the limit for how much you can shrink the components. A computer based on magnetism would avoid the problem of overheating,” says Professor Kim Lefmann, Condensed Matter Physics, NBI.

“Our discovery is not a direct recipe for making a computer based on magnetism. Rather we have disclosed a fundamental magnetic property which you need to control, if you want to design a such computer.”

Smart roof coating uses physics trick to warm or cool the house, depending on the season

Rooftop coatings can keep homes cool — like cooling paper that helps radiate heat away. Or they can trap heat inside, keeping homes warm.

But what is the optimal rooftop coating for homes with both a hot and cold season?

Scientists have come up with an answer: an all-season covering that keeps homes warm in the winter and cool in the summer.

Humans are the Mind of the Cosmos to The Unnerving Origin of Technosignatures

This week’s “Heard in the Milky Way” offers audio and video talks and interviews with leading astronomers and astrophysicists that range from Would Data from an Alien Intelligence be Lethal for Us to Neal Stephenson on Sci-Fi, Space, Aliens, AI and the Future of Humanity to Is Alien Life Weirder than We Think, and much more. This new weekly feature, curated by The Daily Galaxy editorial staff, takes you on a journey with stories that change our knowledge of Planet Earth, our Galaxy, and the vast cosmos beyond.

Using Sound To Control Enzymatic Reactions

Unhackneyed compartmentalization generated by audible sound allows the enzyme reactions to be controlled spatiotemporally.

Spatiotemporal regulation of multistep enzyme reactions through compartmentalization is essential in studies that mimic natural systems such as cells and organelles. Until now, scientists have used liposomes, vesicles, or polymersomes to physically separate the different enzymes in compartments, which function as ‘artificial organelles’. But now, a team of researchers led by Director KIM Kimoon at the Center for Self-assembly and Complexity within the Institute for Basic Science in Pohang, South Korea successfully demonstrated the same spatiotemporal regulation of chemical reactions by only using audible sound, which is completely different from the previous methods mentioned above.

Although sound has been widely used in physics, materials science, and other fields, it has rarely been used in chemistry. In particular, audible sound (in the range of 20–20,000 Hz) has not been used in chemical reactions so far because of its low energy. However, for the first time, the same group from the IBS had previously successfully demonstrated the spatiotemporal regulation of chemical reactions through a selective dissolution of atmospheric gases via standing waves generated by audible sound back in 2020.

We finally have a working supersolid. Here’s why that matters

For the past several years, scientists have been creating supersolids at very tiny scales in the lab. Now, a group of physicists have made the most sophisticated supersolid yet: one that exists in two-dimensions, like a sheet of paper. They published their results in Nature last Wednesday.

“It’s always been a sort of outstanding goal to bring [supersolids] into two dimensions,” says Matthew Norcia, a physicist at Innsbruck University in Austria, and lead author of the Nature paper.

So what exactly is a supersolid? At its base, it contains properties of two different states of matter, one mundane and another quite esoteric.

Physicist designs magnetic thrust engine that could rocket us to the Red Planet

Circa 2021


With SpaceX continuing the testing phase for Starship and enthusiasm spreading for an actual crewed flight to Mars, an interesting magnetic thrust rocket concept conceived by physicist Fatima Ebrahimi at the US Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) might make the mission much more cost effective.

The feasibility of safe, sustainable propulsion systems that will outperform traditional chemical-based rocket engines on deep space voyages, not only in our own solar system but someday perhaps to a distant galaxy outside the Milky Way, is foremost on astrophysicists’ minds.

Ion thrusters, once the standard mode of acceleration for imaginative sci-fi authors and now the preferred positioning engine for NASA scientists and engineers in their satellites, might have greater endurance and are a lot cheaper to operate but generate a minuscule amount of thrust for acceleration purposes. This isn’t exactly a viable option for a trip to the Red Planet where hundreds of tons of spacecraft are being moved across the heavens.

The Tesseract: between mediated consciousness and embodiment

Abstract

As a sensate infrastructure, the body conveys information to and from the brain to complete a perceptual concordance with consciousness. This system of reciprocal communication both positions consciousness in spacetime, and allows that consciousness is dependent upon the body to roam. Through movement we comprehend. The corporeal occupation of spacetime permits human consciousness access to the phenomena of its physical environment, whereby it uses language (utterance) to both construct and describe this existence. This mediated transmission evolved into story and narrative in an attempt to apprehend, control and more importantly convey what is perceived. It is precisely the components of space and time, critical elements to our own existence that play such a paramount role in our ability to generate meaning and narrative comprehension. As our dimensional understanding has evolved and extended, so too has our understanding that space and time are crucial components of narrative. With the emergence of auxiliary narrative spaces, this movement of consciousness affords opportunities to create new narrative imperatives. In the theoretical realm of physics, the tesseract makes it possible to overcome the restraints of time. The tesseract is a gravitational wormhole that represents the physical compression of space that circumvents time in order to move from one location in spacetime to another. The index, as part of the body, but also the mechanism for applying a collapsed signification, requires both utterance (mediation) and event (temporal-frame) in order to create cognitive meaning. The indexical functions as a linguistic tesseract that collapses language creating a bridge over the semantic divide between utterance and meaning. This paper places the function and potential of the tesseract within the paradigm of cognitive narratology through the argument that compression is the mechanism for narrative construction of story, autopoiesis, and the locality of self.

Long-awaited accelerator ready to explore origins of elements

The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) in East Lansing had a budget of $730 million, most of it funded by the US Department of Energy, with a $94.5 million contribution from the state of Michigan. MSU contributed an additional $212 million in various ways, including the land. It replaces an earlier National Science Foundation accelerator, called the National Superconducting Cyclotron Laboratory (NSCL), at the same site. Construction of FRIB started in 2014 and was completed late last year, “five months early and on budget”, says nuclear physicist Bradley Sherrill, who is FRIB’s science director.

For decades, nuclear physicists had been pushing for a facility of its power — one that could produce rare isotopes orders of magnitude faster than is possible with the NSCL and similar accelerators worldwide. The first proposals for such a machine came in the late 1980s, and consensus was reached in the 1990s. “The community was adamant that we need to get a tool like this,” says Witold Nazarewicz, a theoretical nuclear physicist and FRIB’s chief scientist.

‘Doomed’ Moon Phobos Is Going To Crash Into Mars

Last week, NASA’s Perseverance Rover captured a gorgeous view of Phobos eclipsing the Sun, from the surface of Mars. From the point of view of any Martian microbes lurking out there, the eclipse may have seemed more ominous (yeah ok, there might not be living organisms up there, let alone ones sentient enough to grasp the concept of an eclipse) as the moon is destined by physics to one day slam into the red planet.

Phobos – the closest of Mars’ two moons – is set to get ever closer to the planet, before its final descent, while Deimos will drift ever outwards until it leaves Mars’ orbit.

/* */