Toggle light / dark theme

I don’t believe in free will. This is why

If I were a brilliant physicist, I would have written this.


Learn more about differential equations (and many other topics in maths and science) on Brilliant using the link https://brilliant.org/sabine. You can get started for free, and the first 200 will get 20% off the annual premium subscription.

Do humans have free will or to the laws of physics imply that such a concept is not much more than a fairy tale? Do we make decisions? Did the big bang start a chain reaction of cause and effects leading to the creation of this video? That’s what we’ll talk about today.

💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
👉 Transcript and References on Patreon ➜ https://www.patreon.com/Sabine.
📩 Sign up for my weekly science newsletter. It’s free! ➜ https://sabinehossenfelder.com/newsletter/
🔗 Join this channel to get access to perks ➜
https://www.youtube.com/channel/UC1yNl2E66ZzKApQdRuTQ4tw/join.
🖼️ On instagram ➜ https://www.instagram.com/sciencewtg/

00:00 Intro.

Do We Share DNA with ET?

Year 2020 o.o!!!


The primary difficulty of interstellar communication is finding common ground between ourselves and other intelligent entities about which we can know nothing with absolute certainty. This common ground would be the basis for a universal language that could be understood by any intelligence, whether in the Milky Way, Andromeda, or beyond the cosmic horizon. To the best of our knowledge, the laws of physics are the same throughout the universe, which suggests that the facts of science may serve as a basis for mutual understanding between humans and an extraterrestrial intelligence.

One key set of scientific facts presents an intriguing question. If aliens were to visit Earth and learn about its inhabitants, would they be surprised that such a wide variety of species all share a common genetic code? Or would this be all too familiar? There is probable cause to assume that the structure of genetic material is the same throughout the universe and that, while this is liable to give rise to life forms not found on Earth, the variety of species is fundamentally limited by the constraints built into the genetic mechanism.

On Earth we have only sequenced the genomes of a small percentage of living organisms and have only recently completed the human genome. We have successfully cloned several animals, but technical and ethical roadblocks prevent scientists from doing the same with humans. If an extraterrestrial civilization isn’t burdened with ethical dilemmas about cloning, however, sending the genetic code for humans and other species may be the most effective way to teach them about our biology.

Signs of a Critical Imbalance in Physics Seen in The Arrangements of Galaxies

Physicists have long puzzled over why there is more matter in the Universe than its flipped twin, antimatter. Without this imbalance, the two types of material would have canceled out, leaving nothing but a boring glow in the vast emptiness of space.

Somehow, at some point, something changed in the way the Universe works on a fundamental level, favoring the mirrored state – or parity – of one kind of ‘stuff’ over the other.

Scientists have sought clues to this critical moment in the remnants of the Big Bang, including the cosmic microwave background and gravitational waves, without much luck.

Can We Move PLANET EARTH Across the Universe?

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Interstellar travel is horrible-what with the cramped quarters of your spaceship and only the thin hull separating you from deathly cold and deadly cosmic rays. Much safer to stay on here Earth with our gloriously habitable biosphere, protective magnetic field, and endless energy from the Sun. But what if we could have the best of all worlds? No pun intended. What if we could turn our entire solar system into a spaceship and drive the Sun itself around the galaxy? Well, I don’t know if we definitely can, but we might not not be able to.

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/spacetime.

Search the Entire Space Time Library Here: https://search.pbsspacetime.com/

Black Holes Might Really Be Giant Structures Made of Spacetime, Physicists Propose

“It’s an interesting question to ask: Are there things other than a black hole” that “will give you a hint about what new physics could look like?” added Bah. “But before you get there, you need to know how to tell whether you have a black hole or not, and to do that you have some prototype examples of things that are not black holes to be able to compare.”

Black holes are among the most fascinating and puzzling objects ever observed in our universe. These massive compact entities have so much gravitational power that nothing, not even light, can escape beyond their borders, known as the event horizon. Scientists have imaged black holes with the Event Horizon Telescope and have captured the ripples that these objects make in spacetime, which are called gravitational waves.

Indian scientists discover gigantic alien planet, 13 times bigger than Jupiter

An international team of scientists led by Professor Abhijit Chakraborty of the Physical Research Laboratory (PRL) in Ahmedabad identified the densest alien planet, 13 times the size of Jupiter.

This is the third exoplanet identified by PRL scientists. The discovery was detailed in the journal Astronomy & Astrophysics Letters.

Scientists from India, Germany, Switzerland, and the United States utilised the indigenous PRL Advanced Radial-velocity Abu-sky Search spectrograph (PARAS) at Mt. Abu’s Gurushikhar Observatory to precisely determine the planet’s mass. The exoplanet weighs 14 g/cm3.

Astrophysicists catalog all known planet-hosting, three-star systems

A planetary physicist at The University of Texas at Arlington is the lead author of a study that catalogs all known planet-hosting, triple-stellar systems—those having three or more stars with planets.

Manfred Cuntz, professor of physics, led the project, titled “An Early Catalog of Planet-hosting Multiple-star Systems of Order Three and Higher.” This study provides a thorough bibliographic assessment of planet-hosting, triple-stellar systems.

It was recently published in The Astrophysical Journal Supplements Series. Co-authors include UTA alumni G.E. Luke, Matthew Millard and Lindsey Boyle, as well as Shaan D. Patel, a doctoral-bound graduate student.

LIGO starts its fourth round of searching for gravitational waves and black holes

After three years of upgrading and waiting, due in part to the coronavirus pandemic, the Laser Interferometer Gravitational-wave Observatory has officially resumed its hunt for the signatures of crashing black holes and neutron stars.

“Our LIGO teams have worked through hardship during the past two-plus years to be ready for this moment, and we are indeed ready,” Caltech physicist Albert Lazzarini, the deputy director of the LIGO Laboratory, said in a news release.

Lazzarini said the engineering tests leading up to today’s official start of Observing Run 4, or O4, have already revealed a number of candidate events that have been shared with the astronomical community.

Scientists find first evidence for new superconducting state in Ising superconductor

In a ground-breaking experiment, scientists from the University of Groningen, together with colleagues from the Dutch universities of Nijmegen and Twente and the Harbin Institute of Technology (China), have discovered the existence of a superconductive state that was first predicted in 2017.

They present evidence for a special variant of the FFLO superconductive state in the journal Nature. This discovery could have significant applications, particularly in the field of superconducting electronics.

The lead author of the paper is Professor Justin Ye, who heads the Device Physics of Complex Materials group at the University of Groningen. Ye and his team have been working on the Ising superconducting state. This is a special state that can resist magnetic fields that generally destroy , and that was described by the team in 2015.

/* */