Toggle light / dark theme

Echopraxia is a book set in one of the most interesting sci-fi universes that I have covered on this channel. It is technically a sequel to Blindsight, but it is not necessary that you read Blindsight to understand Echopraxia is set in the late 21 century. About 14 years after man’s first contact with alien life.

This book brings up one of the most interesting concepts I’ve ever encountered in any sci-fi book ever. And that is the concept of the “Digital Universe” and God as a Virus. Now this is a concept that comes from the field of digital physics, which keep in mind is all theoretical. It is based on the premise that the universe is pure mathematics at its base, every event that occurs can be thought of as a kind of computation. This could mean that the universe is a simulation, but that is not necessary for the idea to work.

The universe could itself be a giant computer, physics would be its software and matter, its hardware. Every movement of an electron would be a calculation in that vast supercomputer. In some models of the Digital Universe, matter itself is merely an instantiation of numbers.

Get Echopraxia: https://www.amazon.com/Echopraxia-Firefall-Book-Peter-Watts-…sr=8-1

Cambridge researchers have discovered a new topological phase in a two-dimensional system, which could be used as a new platform for exploring topological physics in nanoscale devices.

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and . Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

It was recently discovered that in materials such as (hBN), which are less symmetric than graphene, ferroelectricity occurs when one layer slides over the other and breaks a symmetry. Ferroelectricity is the switching of a material’s with an , which is a useful property for information processing and memory storage.

The first possible scenarios for life’s origin is that life may simply have been a miracle. It may have been a divine act of intervention. If so, then the origin of life is not a scientific question. There is no experiment one can propose or an observation one can make.

Yet, it’s equally possible that the origin of life was an event that’s fully consistent with the known laws of physics and chemistry, but an extremely improbable, perhaps unique event; perhaps an event that only took place on Earth. Once again, it’s really not amenable to scientific study, because we can’t go into the laboratory and study a unique event.

And then there is a third possibility, and that’s that life is an inevitable consequence of chemistry. That, given an appropriate environment—an appropriate planet with water, for example—and sufficient time, that life always arises.

Tapping The Power Of The Stars — Dr. Andrea Kritcher Ph.D., Lawrence Livermore National Laboratory, U.S. Department of Energy.


Dr. Andrea (Annie) Kritcher, Ph.D. is a nuclear engineer and physicist who works at the Lawrence Livermore National Laboratory (https://www.llnl.gov/). She is the design lead of the HYBRID-E capsule technology within Lawrence Livermore’s Inertial Confinement Fusion (ICF) program, and is a member of the ICF leadership team and lead designer for shot N210808, at their National Ignition Facility, a recent experiment that heralded a significant step towards a fusion break-even target. She was elected Fellow of the American Physical Society in 2022.

Dr. Kritcher was first employed at Lawrence Livermore as a summer intern in 2004, as an LLNL Lawrence Scholar during her time at UC Berkeley, where she earned a master’s degree and doctorate in nuclear engineering, and as a Lawrence postdoctoral fellow in 2009 following completion of her Ph.D. During her postdoctoral appointment she explored using X-rays to measure the properties of warm and hot dense matter (plasma), and measuring how nuclei interact with dense plasma.

Basically we are nearing if not already in the age of infinity. What this means is that full automation can be realized imagine not needing really to work to survive bit we could thrive and work on harder things like new innovative things. Basically we could automate all work so we could automate the planet to get to year million or year infinity maybe even days or months once realized full automation could lead to more even for physics where one could finally find the theory of everything or even master algorithm. 😀 Really in the age of infinity anything could be possible from solving impossible problems to nearly anything.


These assistants won’t just ease the workload, they’ll unleash a wave of entrepreneurship.

A white dwarf star can explode as a supernova when its mass exceeds the limit of about 1.4 solar masses. A team led by the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching and involving the University of Bonn has now found a binary star system in which matter flows onto the white dwarf from its companion.

The system was found due to bright, so-called super-soft X-rays, which originate in the nuclear fusion of the overflowed gas near the surface of the white dwarf. The unusual thing about this source is that it is and not hydrogen that overflows and burns. The measured luminosity suggests that the mass of the white dwarf is growing more slowly than previously thought possible, which may help to understand the number of supernovae caused by exploding . The results have been published in the journal Nature.

Exploding white dwarfs are not only considered the main source of iron in the universe, they are also an important tool for cosmology. As so-called Type Ia supernovae (SN Ia), they all become roughly equally bright, allowing astrophysics a precise determination of the distance of their host galaxies.

A team of Rutgers University scientists dedicated to pinpointing the primordial origins of metabolism – a set of core chemical reactions that first powered life on Earth – has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.

The research, published on March 10 in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Just a couple of years earlier, in 1963, New Zealand mathematician Roy Kerr found a solution to Einstein’s equation for a rotating black hole. This was a “game changer for black holes,” Giorgi noted in a public lecture given at the virtual 2022 International Congress of Mathematicians. Rotating black holes were much more realistic astrophysical objects than the non-spinning black holes that Karl Schwarzschild had solved the equations for.

“Physicists really had believed for decades that the black hole region was an artifact of symmetry that was appearing in the mathematical construction of this object but not in the real world,” Giorgi said in the talk. Kerr’s solution helped establish the existence of black holes.

In a nearly 1,000-page paper, Giorgi and colleagues used a type of “proof by contradiction” to show that Kerr black holes that rotate slowly (meaning they have a small angular momentum relative to their mass) are mathematically stable. The technique entails assuming the opposite of the statement to be proved, then discovering an inconsistency. That shows that the assumption is false. The work is currently undergoing peer review. “It’s a long paper, so it’s going to take some time,” Giorgi says.

Argentinian-born mathematician Luis Caffarelli has won the 2023 Abel Prize — one of the most coveted awards in mathematics — for his work on equations that are important for describing physical phenomena, such as how ice melts and fluids flow. He is the first person born in South America to win the award.

Caffarelli’s results “are technically virtuous, covering many different areas of mathematics and its applications”, says a statement by Helge Holden, a mathematician at the Norwegian University of Science and Technology in Trondheim who chairs the Abel Committee.

The winner says receiving the news was an emotional moment, because “it shows that people have some appreciation for me and for my science”.