Menu

Blog

Archive for the ‘physics’ category: Page 104

Sep 25, 2022

How infinity threatens cosmology

Posted by in categories: cosmology, mathematics, physics

Infinity is back. Or rather, it never (ever, ever…) went away. While mathematicians have a good sense of the infinite as a concept, cosmologists and physicists are finding it much more difficult to make sense of the infinite in nature, writes Peter Cameron.

Each of us has to face a moment, often fairly early in our life, when we realize that a loved one, formerly a fixture in our life, was not infinite, but has left us, and that someday we too will have to leave this place.

This experience, probably as much as the experience of looking at the stars and wondering how far they go on, shapes our views of infinity. And we urgently want answers to our questions. This has been so since the time, two and a half millennia ago, when Malunkyaputta put his doubts to the Buddha and demanded answers: among them he wanted to know if the world is finite or infinite, and if it is eternal or not.

Sep 25, 2022

A new experimental study tackles the unsolved mystery of ‘nanobubbles’

Posted by in category: physics

Nanobubbles are extremely small (i.e., nanoscopic) gaseous cavities that some physicists observed in aqueous solutions, typically after specific substances were dissolved in them. While some studies reported the observation of these incredibly tiny bubbles, some scientists have argued that they are merely solid or oily residues formed during experiments.

Researchers at Centro de Investigación y de Estudios Avanzados Unidad Monterrey and Centro de Investigación en Matemáticas Unidad Monterrey in Mexico have recently carried out an experiment aimed at further investigating the nature of these elusive and mysterious objects, specifically when xenon and krypton were dissolved in water. Their study, featured in Physical Review Letters, identified the formation of what the team refers to as “nanoblobs,” yet found no evidence of nanobubbles.

“Our aim was to create xenon and krypton nanobubbles using a clean method,” Carlos Ruiz Suarez, one of the researchers who carried out the study, told Phys.org. “I must say that many scientists claim that nanobubbles, despite their use in many applications, do not exist. Rather, it is thought that they are oil/solid contaminants formed during the experiments.”

Sep 25, 2022

Substances trapped in nanobubbles exhibit unusual properties

Posted by in categories: chemistry, information science, nanotechnology, physics

Skoltech scientists modeled the behavior of nanobubbles appearing in van der Waals heterostructures and the behavior of substances trapped inside the bubbles. In the future, the new model will help obtain equations of state for substances in nano-volumes, opening up new opportunities for the extraction of hydrocarbons from rock with large amounts of micro-and nanopores. The results of the study were published in the Journal of Chemical Physics.

The van der Waals nanostructures hold much promise for the study of tiniest samples with volumes from 1 cubic micron down to several cubic nanometers. These atomically thin layers of two-dimensional materials, such as graphene, (hBN) and dichalcogenides of transition metals, are held together by weak van der Waals interaction only. Inserting a sample between the layers separates the upper and bottom layers, making the upper layer lift to form a nanobubble. The resulting will then become available for transmission electron and , providing an insight into the structure of the substance inside the bubble.

The properties exhibited by inside the van der Waals nanobubbles are quite unusual. For example, water trapped inside a nanobubble displays a tenfold decrease in its dielectric constant and etches the diamond surface, something it would never do under normal conditions. Argon which typically exists in when in large quantities can become solid at the same pressure if trapped inside very small nanobubbles with a radius of less than 50 nanometers.

Sep 24, 2022

JWST observes Earendel — the most distant star known — 12.8 billion ly away | Night Sky News Sep ‘22

Posted by in categories: asteroid/comet impacts, chemistry, existential risks, information science, physics

For Physics & Chemistry experiments for kids delivered to your door head to https://melscience.com/sBIs/ and use promo code DRBECKY50 for 50% off the first month of any subscription (valid until 22nd October 2022).

To find out whether you can see the partial solar eclipse on 25th October 2022 put in your location here: https://www.timeanddate.com/eclipse/map/2022-october-25

Continue reading “JWST observes Earendel — the most distant star known — 12.8 billion ly away | Night Sky News Sep ‘22” »

Sep 24, 2022

Musing on Understanding & AI — Hugo de Garis, Adam Ford, Michel de Haan

Posted by in categories: education, existential risks, information science, mapping, mathematics, physics, robotics/AI

Started out as an interview ended up being a discussion between Hugo de Garis and (off camera) Adam Ford + Michel de Haan.
00:11 The concept of understanding under-recognised as an important aspect of developing AI
00:44 Re-framing perspectives on AI — the Chinese Room argument — and how can consciousness or understanding arise from billions of seemingly discreet neurons firing? (Should there be a binding problem of understanding similar to the binding problem of consciousness?)
04:23 Is there a difference between generality in intelligence and understanding? (and extentionally between AGI and artificial understanding?)
05:08 Ah Ha! moments — where the penny drops — what’s going on when this happens?
07:48 Is there an ideal form of understanding? Coherence & debugging — ah ha moments.
10:18 Webs of knowledge — contextual understanding.
12:16 Early childhood development — concept formation and navigation.
13:11 The intuitive ability for concept navigation isn’t complete.
Is the concept of understanding a catch all?
14:29 Is it possible to develop AGI that doesn’t understand? Is generality and understanding the same thing?
17:32 Why is understanding (the nature of) understanding important?
Is understanding reductive? Can it be broken down?
19:52 What would be the most basic primitive understanding be?
22:11 If (strong) AI is important, and understanding is required to build (strong) AI, what sorts of things should we be doing to make sense of understanding?
Approaches — engineering, and copy the brain.
24:34 Is common sense the same thing as understanding? How are they different?
26:24 What concepts do we take for granted around the world — which when strong AI comes about will dissolve into illusions, and then tell us how they actually work under the hood?
27:40 Compression and understanding.
29:51 Knowledge, Gettier problems and justified true belief. Is knowledge different from understanding and if so how?
31:07 A hierarchy of intel — data, information, knowledge, understanding, wisdom.
33:37 What is wisdom? Experience can help situate knowledge in a web of understanding — is this wisdom? Is the ostensible appearance of wisdom necessarily wisdom? Think pulp remashings of existing wisdom in the form of trashy self-help literature.
35:38 Is understanding mapping knowledge into a useful framework? Or is it making accurate / novel predictions?
36:00 Is understanding like high resolution carbon copy like models that accurately reflect true nature or a mechanical process?
37:04 Does understanding come in gradients of topologies? Is there degrees or is it just on or off?
38:37 What comes first — understanding or generality?
40:47 Minsky’s ‘Society of Mind’
42:46 Is vitalism alive in well in the AI field? Do people actually think there are ghosts in the machines?
48:15 Anthropomorphism in AI literature.
50:48 Deism — James Gates and error correction in super-symmetry.
52:16 Why are the laws of nature so mathematical? Why is there so much symmetry in physics? Is this confusing the map with the territory?
52:35 The Drake equation, and the concept of the Artilect — does this make Deism plausible? What about the Fermi Paradox?
55:06 Hyperintelligence is tiny — the transcention hypothesis — therefore civs go tiny — an explanation for the fermi paradox.
56:36 Why would *all* civs go tiny? Why not go tall, wide and tiny? What about selection pressures that seem to necessitate cosmic land grabs?
01:01:52 The Great Filter and the The Fermi Paradox.
01:02:14 Is it possible for an AGI to have a deep command of knowledge across a wide variety of topics/categories without understanding being an internal dynamic? Is the turing test good enough to test for understanding? What kinds of behavioral tests could reliably test for understanding? (Of course without the luxury of peering under the hood)
01:03:09 Does AlphaGo understand Go, or DeepBlue understand chess? Revisiting the Chinese Room argument.
01:04:23 More on behavioral tests for AI understanding.
01:06:00 Zombie machines — David Chalmers Zombie argument.
01:07:26 Complex enough algorithms — is there a critical point of complexity beyond which general intelligence likely emerges? Or understanding emerges?
01:08:11 Revisiting behavioral ‘turing’ tests for understanding.
01:13:05 Shape sorters and reverse shape sorters.
01:14:03 Would slightly changing the rules of Go confuse AlphaGo (after it had been trained)? Need for adaptivity — understanding concept boundaries, predicting where they occur, and the ability to mine outwards from these boundaries…
01:15:11 Neural nets and adaptivity.
01:16:41 AlphaGo documentary — worth a watch. Progresses in AI challenges human dignity which is a concern, but the DeepMind and the AlphaGo documentary seemed to be respectful. Can we manage a transition from human labor to full on automation while preserving human dignity?

Filmed in the dandenong ranges in victoria, australia.

Many thanks for watching!

Sep 23, 2022

Scientists Discover the Nearest Black Hole to Our Solar System Ever Found

Posted by in categories: computing, cosmology, physics

Astronomers have recently found the nearest known black hole to our solar system. According to scientists, the black hole is 1,570 lightyears away and ten times larger than our sun.

Known as Gaia BH1, the research was led by Harvard Society Fellow astrophysicist Kareem El-Badry, with the Harvard-Smithsonian Center for Astrophysics (CfA) and the Max Planck Institute for Astronomy (MPIA).

In addition, El-Badry worked with researchers from CfA, MPIA, Caltech, UC Berkeley, the Flatiron Institute’s Center for Computational Astrophysics (CCA), the Weizmann Institute of Science, the Observatoire de Paris, MIT’s Kavli Institute for Astrophysics and Space Research, and other universities.

Sep 21, 2022

‘Immortality Is My Goal’: 11-Year-Old Boy Gets Bachelor’s Degree In Physics

Posted by in categories: life extension, physics

Eleven-year-old Simons only took a year to complete his bachelor’s degree, which usually takes at least three years.

In a conversation with the Dutch daily De Telegraaf, Simons said that, “I don’t really care if I’m the youngest.” “It’s all about getting knowledge for me.”

“This is the first puzzle piece in my goal of replacing body parts with mechanical parts,” Simons said.

Sep 20, 2022

MIT Contributes to Success of Historic Fusion Ignition Experiment

Posted by in categories: energy, physics

MIT students are part of the large team that achieved fusion ignition for the first time in a laboratory. Researchers around the world have been engaged in attempts to achieve fusion ignition in a laboratory for more than half a century. It is a grand challenge of the 21st century. An approach called inertial confinement fusion (ICF), which uses lasers to implode a pellet of fuel in a quest for ignition, has been the focus of the High-Energy-Density Physics (HEDP) group at MIT’s Plasma Science and Fusion Center. This group, including nine former and current MIT students, was crucial to a historic ICF ignition experiment performed in 2021. The results were published this year on the anniversary of that success.

Sep 17, 2022

Released: James Webb Image We Were All Waiting For

Posted by in categories: physics, space

The James Webb Space Telescope has released stunning new images of the Orion nebula, a star-forming region lying about 1,300 light years away in the Orion constellation. The images are overflowing with details and are a significant improvement over the Hubble and the Spitzer images of the same. Structures down to the size of the solar system can be seen in them.

The details of the new Webb images will enable astronomers studying stellar astrophysics to understand star formation in detail. Star formation is still not fully understood, and several questions remain unanswered.

Continue reading “Released: James Webb Image We Were All Waiting For” »

Sep 16, 2022

Researchers May Have Actually Managed To Hear The Background ‘Hum’ Of The Universe

Posted by in categories: physics, space

I know, it might sound a bit out there, but it seems we’re able to hear more than you’d expect. Researchers have managed to hear something that they believe is the ‘hum’ of the universe and well, the concept in itself is mind-blowing.

While this ‘hum’ isn’t exactly what you’d expect, it is quite interesting to learn about. You see, because there is no air in space it’s not actually a sound at all but rather more or less something quite different. This finding overall comes from astronomers at the North American Nanohertz Observatory for Gravitational Waves also known as ‘NANOGrav.’ Overall this hum could really help us better understand the history of the universe in time as we further research it.

NANOGrav wrote as follows on this topic: