Toggle light / dark theme

Some mysteries in science vanish with more accurate measurements, resolving gaps with a puff of new data. And sometimes, a second look simply reinforces the fact you have a mystery on your hands.

It’s the latter in the case of a new study that challenges the Universe’s most fundamental laws of physics.

The Hubble constant is an expression of the speed of Universe’s expansion. Unfortunately, there’s more than one solution for it, depending on how it’s measured.

A magnetic cage keeps the more than 100 million degree Celsius hot plasmas in nuclear fusion devices at a distance from the vessel wall so that they do not melt. Now researchers at the Max Planck Institute for Plasma Physics (IPP) have found a way to significantly reduce this distance. This could make it possible to build smaller and cheaper fusion reactors for energy production. The work was published in the journal Physical Review Letters.

Research by the Atacama Cosmology Telescope collaboration has culminated in a significant breakthrough in understanding the evolution of the universe.

For millennia, humans have been fascinated by the mysteries of the cosmos.

Unlike ancient philosophers imagining the universe’s origins, modern cosmologists use quantitative tools to gain insights into its evolution and structure. Modern cosmology dates back to the early 20th century, with the development of Albert Einstein’s theory of general relativity.

Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle.

“Launching and deploying space telescopes is a complicated and costly procedure,” said Sebastian Rabien from Max Planck Institute for Extraterrestrial Physics in Germany. “This new approach—which is very different from typical mirror production and polishing procedures—could help solve weight and packaging issues for telescope mirrors, enabling much larger, and thus more sensitive, telescopes to be placed in orbit.”

In the journal Applied Optics, Rabien reports successful fabrication of parabolic membrane mirror prototypes up to 30 cm in diameter. These mirrors, which could be scaled up to the sizes needed in space telescopes, were created by using chemical vapor deposition to grow membrane mirrors on a rotating liquid inside a vacuum chamber. He also developed a method that uses heat to adaptively correct imperfections that might occur after the mirror is unfolded.

Researchers have discovered that in the exotic conditions of the early universe, waves of gravity may have shaken space-time so hard that they spontaneously created radiation.

The physical concept of resonance surrounds us in everyday life. When you’re sitting on a swing and want to go higher, you naturally start pumping your legs back and forth. You very quickly find the exact right rhythm to make the swing go higher. If you go off rhythm then the swing stops going higher. This particular kind of phenomenon is known in physics as a parametric resonance.

Your legs act as an external pumping mechanism. When they match the resonant frequency of the system, in this case your body sitting on a swing, they are able to transfer energy to the system making the swing go higher.

Once confined to the pages of science fiction, they are said to create shortcuts for long journeys across the universe.

Scientists have found they may magnify light by a factor of 100,000 — which is key to finding the strange tunnels.

Albert Einstein predicted their existence more than a century ago in his theory of general relativity.