Menu

Blog

Archive for the ‘particle physics’ category: Page 88

Mar 9, 2024

Quantum Gravity Unveiled — Scientists Crack the Cosmic Code That Baffled Einstein

Posted by in categories: particle physics, quantum physics

Physicists successfully measure gravity in the quantum world, detecting weak gravitational pull on a tiny particle with a new technique that uses levitating magnets, putting scientists closer to solving mysteries of the universe.

Scientists are a step closer to unraveling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force discovered by Isaac Newton works in the tiny quantum world.

Mar 9, 2024

Fixing space-physics mistake enhances satellite safety

Posted by in categories: mathematics, particle physics, space

Correcting 50-year-old errors in the math used to understand how electromagnetic waves scatter electrons trapped in Earth’s magnetic fields will lead to better protection for technology in space.

“The discovery of these errors will help scientists improve their models of artificial radiation belts produced by high-altitude and how an event like that would impact our space technology,” said Greg Cunningham, a space scientist at Los Alamos National Laboratory. “This allows us to make better predictions of what that threat could be and the efficacy of radiation belt remediation strategies.”

Heliophysics models are important tools researchers use to understand phenomena around the Earth, such as how electrons can become trapped in the near-Earth space environment and damage electronics on space assets, or how Earth’s magnetic field shields us from both and particles in solar wind.

Mar 9, 2024

Quantum Leap in Superconductivity: Harvard’s High-Pressure Breakthrough

Posted by in categories: particle physics, transportation

Harvard scientists have made a significant advance in high-pressure physics by creating a tool that directly images superconducting materials under extreme conditions, facilitating new discoveries in the field of superconducting hydrides.

Hydrogen (like many of us) acts weird under pressure. Theory predicts that when crushed by the weight of more than a million times our atmosphere, this light, abundant, normally gaseous element first becomes a metal, and even more strangely, a superconductor – a material that conducts electricity with no resistance.

Scientists have been eager to understand and eventually harness superconducting hydrogen-rich compounds, called hydrides, for practical applications ­– from levitating trains to particle detectors. But studying the behavior of these and other materials under enormous, sustained pressures is anything but practical, and accurately measuring those behaviors ranges somewhere between a nightmare and impossible.

Mar 9, 2024

New method measures the 3D position of individual atoms

Posted by in categories: biological, particle physics

For more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision smaller than one-thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom is lacking.

A new method has now been developed that can determine all three spatial coordinates of an atom with one single image. This method—developed by the University of Bonn and University of Bristol—is based on an ingenious physical principle. The study is published in the journal Physical Review A.

Anyone who has used a microscope in a biology class to study a plant cell will probably be able to recall a similar situation. It is easy to tell that a certain chloroplast is located above and to the right of the nucleus.

Mar 9, 2024

What is the big rip, and can we stop it?

Posted by in categories: cosmology, nuclear energy, particle physics

If two points were ripped apart faster than light, they would no longer interact through any force of physics. Whereas a constant dark energy would leave behind already-intact objects, like clusters of galaxies, phantom energy could tear them apart. In a finite amount of time, billions of years from now, clusters would tear apart, followed by ever-smaller objects. Even atomic and nuclear bonds would not withstand the onslaught.

Eventually, space itself would dissolve in an event known as the Big Rip. Any two points, no matter how close, would be ripped infinitely far away from each other. The very structure of space-time, the causal foundations that make our universe work, would no longer behave. The universe would just break down.

However, luckily, most physicists do not believe this scenario can actually happen. For one, it’s unclear how this process of ripping interacts with the other laws of physics. For example, quarks cannot be torn apart — when you attempt to do so, you need so much energy that new quarks materialize out of the vacuum. So ripping apart quarks just might lead to other, interesting interactions.

Mar 9, 2024

Exploring the surface properties of NiO with low-energy electron diffraction

Posted by in categories: computing, particle physics, quantum physics

Spintronics is a field that deals with electronics that exploit the intrinsic spin of electrons and their associated magnetic moment for applications such as quantum computing and memory storage devices. Owing to its spin and magnetism exhibited in its insulator-metal phase transition, the strongly correlated electron systems of nickel oxide (NiO) have been thoroughly explored for more than eight decades. Interest in its unique antiferromagnetic (AF) and spin properties has seen a revival lately since NiO is a potential material for ultrafast spintronics devices.

Despite this rise in popularity, exploration of its magnetic properties using the low-energy electron diffraction (LEED) technique has not received much attention since the 1970s. To review the understanding of the surface properties, Professor Masamitsu Hoshino and Emeritus Professor Hiroshi Tanaka, both from the Department of Physics at Sophia University, Japan, revisited the surface LEED crystallography of NiO.

The results of their quantitative experimental study investigating the coherent exchange scattering in Ni2+ ions in AF single crystal NiO were reported in The European Physical Journal D.

Mar 9, 2024

We May Finally Know How The First Cells on Earth Formed

Posted by in categories: chemistry, particle physics

The story of how life started on Earth is one that scientists are eager to learn. Researchers may have uncovered an important detail in the plot of chapter one: an explanation of how bubbles of fat came to form the membranes of the very first cells.

A key part of the new findings, made by a team from The Scripps Research Institute in California, is that a chemical process called phosphorylation may have happened earlier than previously thought.

Continue reading “We May Finally Know How The First Cells on Earth Formed” »

Mar 9, 2024

Physicists Reveal a Strange Form of Crystal Where Electrons Can’t Move

Posted by in categories: particle physics, quantum physics

Quantum traffic laws applied to the 3D streetscape of a specific kind of crystal can put the brakes on electron rush hour.

In a search for novel materials that can contain bizarre new states of matter, physicists from Rice University in the US led an experiment that forced free-roaming electrons to stay in place.

While the phenomenon has been seen in materials where electrons are constrained to just two dimensions, this is the first time it’s been observed in a three-dimensional crystal metal lattice, known as a pyrochlore. The technique gives researchers a new tool for studying the less conventional activities of plucky, charge-carrying particles.

Mar 8, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes

Posted by in categories: particle physics, quantum physics

Condensed matter systems and photonic technologies are regularly used by researchers to create microscale platforms that can simulate the complex dynamics of many interacting quantum particles in a more accessible setting. Some examples include ultracold atomic ensembles in optical lattices, superconducting arrays, and photonic crystals and waveguides. In 2006 a new platform emerged with the demonstration of macroscopically coherent quantum fluids of exciton-polaritons to explore many-body quantum phenomena through optical techniques.

When a piece semiconductor is placed between two mirrors—an optical microresonator—the electronic excitations within can become strongly influenced by photons trapped between the mirrors. The resulting new bosonic , known as exciton-polaritons (or polaritons for short), can under the right circumstances undergo a phase transition into a nonequilibrium Bose-Einstein condensate and form a macroscopic quantum fluid or a droplet of light.

Quantum fluids of polaritons have many salient properties, one being that they are optically configurable and readable, permitting easy measurements of the dynamics. This is what makes them so advantageous to simulate many-body physics.

Mar 8, 2024

Open quantum system shows universal behavior

Posted by in categories: chemistry, particle physics, quantum physics

Universal behavior is a central property of phase transitions, which can be seen, for example, in magnets that are no longer magnetic above a certain temperature. A team of researchers from Kaiserslautern, Berlin and Hainan, China, has succeeded for the first time in observing such universal behavior in the temporal development of an open quantum system, a single cesium atom in a bath of rubidium atoms.

This finding helps to understand how quantum systems reach equilibrium. This is of interest to the development of quantum technologies, for example. The study has been published in Nature Communications.

Phase transitions in chemistry and physics are changes in the state of a substance, for example, the change from a liquid to a gaseous phase, when an external parameter such as temperature or pressure is changed.

Page 88 of 588First8586878889909192Last