Menu

Blog

Archive for the ‘particle physics’ category: Page 86

Mar 14, 2024

IceCube identifies seven astrophysical tau neutrino candidates

Posted by in categories: particle physics, space

The IceCube Neutrino Observatory, a cubic-kilometer-sized neutrino telescope at the South Pole, has observed a new kind of astrophysical messenger. In a new study recently accepted for publication as an Editors’ Suggestion by the journal Physical Review Letters and available on the arXiv preprint server, the IceCube collaboration, including Penn State researchers, presented the discovery of seven of the once-elusive astrophysical tau neutrinos.

Mar 14, 2024

Quantum dance to the beat of a drum: Researchers observe how energy of single electron is tuned by surrounding atoms

Posted by in categories: computing, particle physics, quantum physics

Physicists at the University of Regensburg have choreographed the shift of a quantized electronic energy level with atomic oscillations faster than a trillionth of a second.

Throwing a ball into the air, one can transfer arbitrary energy to the ball such that it flies higher or lower. One of the oddities of quantum physics is that particles, e.g., electrons, can often only take on quantized energy values—as if the ball was leaping between specific heights, like steps of a ladder, rather than flying continuously.

Qubits and quantum computers as well as light-emitting quantum dots (Nobel Prize 2023) make use of this principle. However, electronic energy levels can be shifted by collisions with other electrons or atoms. Processes in the quantum world usually take place on atomic scales and are also incredibly fast.

Mar 13, 2024

Giant leap towards neuromorphic devices: High-performance spin-wave

Posted by in categories: computing, nanotechnology, particle physics

A group of Tohoku University researchers has developed a theoretical model for a high-performance spin wave reservoir computing (RC) that utilizes spintronics technology. The breakthrough moves scientists closer to realizing energy-efficient, nanoscale computing with unparalleled computational power.

Credit: Springer Nature Limited

Mar 12, 2024

Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough

Posted by in categories: computing, particle physics, quantum physics

JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability.

In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system.

While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant Professor of Physics Shuo Sun is taking a different approach by using “artificial atoms,” or semiconducting nanocrystals with unique electronic properties. By exploiting the atomic dynamics inside fabricated diamond crystals, physicists like Sun can produce a new type of qubit, known as a “solid-state qubit,” or an artificial atom.

Mar 12, 2024

Precise Measurement of Hydrogen’s Energy Levels

Posted by in categories: particle physics, quantum physics

Physicists used to think they had a good idea of the size of the proton. Values derived from measurements of hydrogen’s emission spectrum and from electron-scattering experiments agreed with a proton radius of around 0.88 femtometers (fm). Then, in 2010, confidence was shaken by a spectral measurement that indicated a proton radius of approximately 0.84 fm [1]. In the years since, this “proton radius puzzle” has become even more of a head-scratcher, with some experiments supporting the original estimate and others finding an even greater discrepancy. Simon Scheidegger and Frédéric Merkt at the Swiss Federal Institute of Technology (ETH), Zurich, have now made precise new measurements of the transition energies between one of hydrogen’s metastable low-energy states and several of its highly excited states [2] (Fig. 1). These measurements allow the researchers to derive some of the atom’s properties, such as its ionization energy, with greater confidence, which should help clear up some of the confusion.

The 2010 study that “shrank the proton” (as the title of the editorial summary in Nature jokingly stated) concerned the 2 S –2 P1/2 Lamb shift [1]. According to Dirac’s predictions, the 2 S and 2 P1/2 levels of atomic hydrogen should be degenerate. The Lamb shift refers to the lifting of this degeneracy by quantum electrodynamic (QED) effects, the largest contribution being the electron “self-energy” due to interactions with virtual photons. Once this and other QED effects are accounted for, a tiny shift of the bound-state energy levels remains, which can be attributed to the proton’s finite size. By measuring this residual energy shift, one can determine the proton radius directly. The authors of the 2010 study did so using hydrogen atoms in which the electron was replaced by its heavier cousin, the muon, since the finite-size effect is stronger in this system.

Ever since that surprise result, researchers have tried to pin down the proton radius both directly, via the finite-size effect, and indirectly, via the Rydberg constant. The Rydberg constant relates an atom’s energy levels to other physical constants and is one of the key inputs used in calculations of the proton radius. Determining its value requires painstaking measurements of the transition energies between hydrogen’s various states. Several groups have made monumental efforts in this regard, but the values they derive for the proton radius have been all over the place. A 2018 measurement of the 1 S –3 S transition by a group in France gave a value of about 0.88 fm [3], a 2019 measurement of the classic Lamb shift (this time in regular hydrogen) by a group in Canada came up with a value of about 0.833 fm [4], and a 2017 measurement of the 2 S –4 P transition by a group in Germany suggested a similarly low value of about 0.834 fm [5]. In 2020, the group in Germany arrived at a slightly higher value of 0.848 fm [6]. In 2022, finally, from measurements of the 2 S –8 D transition, a group at Colorado State University proposed a “compromise value” of about 0.86 fm [7].

Mar 11, 2024

A fresh approach to quantum computers based on atoms and photons

Posted by in categories: computing, particle physics, quantum physics

From the article:

“Somewhere between one and ten million qubits are needed for a fault-tolerant quantum computer, whereas IBM has only just realized a 1,200-qubit computer,” says Aoki.


While this approach isn’t limited to any specific platform for quantum computers, it does lend itself to trapped ions and neutral atoms since they don’t need to be cooled to cryogenic temperatures, which makes them much easier to connect.

Continue reading “A fresh approach to quantum computers based on atoms and photons” »

Mar 11, 2024

Scientists Get Ready to Observe Neutrinos with SBND

Posted by in category: particle physics

The Short-Baseline Near Detector collaboration is preparing for an exciting year at the U.S. Department of Energy’s Fermi National Accelerator Laboratory. After nearly a decade of planning, prototyping and construction, the team is in the final stretch of commissioning of their detector.

In January, engineers began introducing gaseous argon into SBND to push air out of the cryostat. Now that the detector is mostly free of impurities, the team has begun filling it with liquid argon.

Continue reading “Scientists Get Ready to Observe Neutrinos with SBND” »

Mar 10, 2024

Synchrotron nuclear facility saves big with massive solar push

Posted by in categories: nuclear energy, particle physics, solar power, sustainability

The Australian Synchrotron, a crown jewel of Australian scientific infrastructure, is making major strides towards sustainable energy independence. The nuclear research facility recently completed the installation of 3,200 solar panels which now blankets the facility’s rooftops. This move is expected to generate substantial savings and support Synchrotron’s world-class research.

The state-of-the-art particle accelerator has now gone green with a 1.59 MW/ 1,668 kWh rooftop solar system. The facility will save about $2 million in energy costs over the next five years.

Mar 10, 2024

China could begin construction of world’s largest particle collider in three years

Posted by in category: particle physics

China wants to set up a Higgs factory that can produce millions of Higgs boson and establish it as the world leader in high energy physics.

Mar 10, 2024

Ingenious New Method Measures the 3D Position of Individual Atoms

Posted by in category: particle physics

For over ten years, physicists have been able to pinpoint the exact positions of individual atoms with a precision finer than one-thousandth of a millimeter using a specialized microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom – i.e., the distance between the atom and the microscope objective – is lacking.

A new method has now been developed that can determine all three spatial coordinates of an atom with one single image. This method – developed by the University of Bonn and University of Bristol – is based on an ingenious physical principle. The study was recently published in the specialist journal Physical Review A.

Page 86 of 588First8384858687888990Last