Toggle light / dark theme

Quantum Breakthrough: Scientists Create Schrödinger-Cat State With Record-Long Lifetime

A research team led by Prof. Zhengtian Lu and Researcher Tian Xia from the University of Science and Technology of China (USTC) has successfully created a quantum state with a lifetime on the scale of minutes using optically trapped cold atoms. This breakthrough significantly improves the sensitivity of quantum metrology measurements. Their findings were published in Nature Photonics

<em> Nature Photonics </em> is a prestigious, peer-reviewed scientific journal that is published by the Nature Publishing Group. Launched in January 2007, the journal focuses on the field of photonics, which includes research into the science and technology of light generation, manipulation, and detection. Its content ranges from fundamental research to applied science, covering topics such as lasers, optical devices, photonics materials, and photonics for energy. In addition to research papers, <em> Nature Photonics </em> also publishes reviews, news, and commentary on significant developments in the photonics field. It is a highly respected publication and is widely read by researchers, academics, and professionals in the photonics and related fields.

Scientists unlock new dimension in light manipulation, ushering in a new era in photonic technology

Researchers at Heriot-Watt University have made a discovery that could pave the way for a transformative era in photonic technology. For decades, scientists have theorized the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland.

Published in Nature Photonics, the team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs)—a special glass capable of changing how light moves through the material at incredible speeds. These compounds are widely found in and touchscreens and can be shaped as ultra-thin films measuring just 250 nanometers (0.00025 mm), smaller than the wavelength of visible light.

Led by Dr. Marcello Ferrera, Associate Professor of Nanophotonics, of the Heriot-Watt research team, supported by colleagues from Purdue University in the US, managed to “sculpt” the way TCOs react by radiating the material with ultra-fast pulses of light. Remarkably, the resulting temporally engineered layer was able to simultaneously control the direction and energy of individual particles of light, known as photons, a functionality which, up until now, had been unachievable.

Dialing in the temperature needed for precise nuclear timekeeping

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock.

This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229 atom. This transition is less sensitive to environmental disturbances than modern atomic clocks and has been proposed for tests of fundamental physics beyond the Standard Model.

This idea isn’t new in Ye’s laboratory. In fact, work in the lab on nuclear clocks began with a landmark experiment, the results of which were published as a cover article of Nature last year, where the team made the first frequency-based, quantum-state-resolved measurement of the thorium-229 nuclear transition in a thorium-doped host crystal. This achievement confirmed that thorium’s nuclear transition could be measured with enough precision to be used as a timekeeping reference.

AI recognizes the mass of the most energetic particles of cosmic radiation

The use of artificial intelligence (AI) scares many people as neural networks, modeled after the human brain, are so complex that even experts do not understand them. However, the risk to society of applying opaque algorithms varies depending on the application.

While AI can cause great damage in democratic elections through the manipulation of social media, in astrophysics it at worst leads to an incorrect view of the cosmos, says Dr. Jonas Glombitza from the Erlangen Center for Astroparticle Physics (ECAP) at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU).

The astrophysicist uses AI to accelerate the analysis of data from an observatory that researches cosmic radiation.

Recent Breakthroughs Accelerate The Race For Quantum Computing

The race toward scalable quantum computing has reached a pivotal moment, with major players like Microsoft, Google, and IBM pushing forward with breakthroughs. Microsoft’s recent announcement of its Majorana 1 chip marks a significant milestone, while Google’s Willow chip and IBM’s long-term quantum roadmap illustrate the industry’s diverse approaches to achieving fault-tolerant quantum systems. As the quantum computing industry debates the timeline for practical implementation, breakthroughs like Majorana 1 and Willow suggest that major advancements may be closer than previously thought. At the same time, skepticism remains, with industry leaders such as Nvidia CEO Jensen Huang cautioning that meaningful commercial quantum applications could still be decades away.

Microsoft is redefining quantum computing with its new Majorana 1 chip, a significant breakthrough in the pursuit of scalable and fault-tolerant quantum systems. This quantum processor is built on a novel topological architecture that integrates Majorana particles, exotic quantum states that enhance qubit stability and reduce errors. Unlike conventional qubit technologies, which require extensive error correction, Microsoft’s approach aims to build fault tolerance directly into the hardware, significantly improving the feasibility of large-scale quantum computing. Satya Nadella, Microsoft’s CEO, highlighted the significance of this milestone in his LinkedIn post, We’ve created an entirely new state of matter, powered by a new class of materials, topoconductors. This fundamental leap in computing enables the first quantum processing unit built on a topological core.

Sabine is Going to Hate This… But I Have Proof!

Please join my mailing list here 👉 https://briankeating.com/list to win a meteorite 💥
Sabine (@SabineHossenfelder) argues that superdeterminism eliminates free will, challenging the idea of causal choice and possibly undermining science if the laws of physics govern all phenomena. However, inspired by daily life experiences in Southern California, I present a defense of indeterminism, countering the claim that everything is predetermined, while also exploring the ideas of cosmologists Raphael Bousso and Alan Guth.

Sabine Hossenfelder, a theoretical physicist, has argued in favor of superdeterminism, a theory that suggests the universe is deterministic and that our choices are predetermined.

Does Superdeterminism save Quantum Mechanics? Or does it kill free will and destroy science? https://www.youtube.com/watch?v=ytyjgIyegDI

According to her, the apparent randomness in quantum mechanics is an illusion, and the universe is actually a predetermined, clockwork-like system. She claims that if we knew enough about the initial conditions of the universe, we could predict every event, including human decisions.

Hossenfelder’s argument relies on the idea that the randomness in quantum mechanics is not fundamental, but rather a result of our lack of knowledge about the underlying variables. She suggests that if we could access these “hidden variables,” we would find that the universe is deterministic. However, this argument is flawed.

For example, consider the double-slit experiment, where particles passing through two slits create an interference pattern on a screen. Hossenfelder would argue that the particles’ behavior is predetermined, and that the apparent randomness is due to our lack of knowledge about the initial conditions. However, this ignores the fact that the act of observation itself can change the outcome of the experiment, a phenomenon known as wave function collapse.

It took 20 years, but we finally found it

Compare news coverage. Spot media bias. Avoid algorithms. Try Ground News today and get 40% off your subscription by going to https://ground.news/upandatom.

Special thanks to Chuankun Zhang, Tian Ooi, Jacob S. Higgins, and Jack F. Doyle from Prof. Jun Ye’s lab at JILA/NIST/University of Colorado, as well as Prof. Victor Flambaum from UNSW’s Department of Theoretical Physics, for their valuable assistance and consultation on this video.

Hi! I’m Jade. If you’d like to consider supporting Up and Atom, head over to my Patreon page smile
https://www.patreon.com/upandatom.

Visit the Up and Atom store.
https://store.nebula.app/collections/up-and-atom.

https://www.youtube.com/c/upandatom.

For a one time donation, head over to my PayPal smile https://www.paypal.me/upandatomshows.

Observational study supports century-old theory that challenges the Big Bang

A Kansas State University engineer recently published results from an observational study in support of a century-old theory that directly challenges the validity of the Big Bang theory.

Lior Shamir, associate professor of computer science, used imaging from a trio of telescopes and more than 30,000 galaxies to measure the redshift of galaxies based on their distance from Earth. Redshift is the change in the frequency of waves that a galaxy emits, which use to gauge a galaxy’s speed.

Shamir’s findings lend support to the century-old “tired light” theory instead of the Big Bang. The findings are published in the journal Particles.

/* */