Toggle light / dark theme

Robots In Space: Tianwen-1

Dangerous solar blast detected at Mars by Chinese Orbiter in new episode of Robots In Space!🇹🇳🟠.


Join aerospace engineer Mike DiVerde as he breaks down groundbreaking research on Mars radiation from multiple space missions. This comprehensive analysis combines data from Tianwen-1, MAVEN, ExoMars, and the Curiosity rover to understand the dangerous Solar Energetic Particles affecting Mars. Learn why radiation protection is crucial for future Mars colonization and astronaut safety and discover how space weather impacts potential Mars habitats. DiVerde explains complex space science concepts in an accessible way, drawing from recent research that highlights the challenges of keeping humans safe on Mars. Essential viewing for anyone interested in Mars exploration and the future of human space missions.

What are and what do they have to do with dark matter?

Have you ever looked up at the night sky and wondered what you’re not seeing? The skies may be full of invisible “boson stars” that are made of an exotic form of matter that does not shine.

We strongly suspect that the universe is full of dark matter, which makes up around 25% of all the mass and energy in the cosmos. But while circumstantial evidence abounds and we believe that dark matter is some sort of undiscovered particle, we don’t have any direct evidence of such a particle.

Physicists Just Discovered a Strange Atomic Effect That Could Supercharge Quantum Computing

Researchers are exploring multi-level atomic interactions to enhance quantum entanglement. Using metastable states in strontium, they demonstrate how photon.

A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

Muon spin rotation spectroscopy uncovers unique behavior and structure of a phosphorus-containing organic radical

Muon spin rotation (”SR) spectroscopy is a powerful technique that helps to study the behavior of materials at the atomic level. It involves using muons—subatomic particles similar to protons but with a lighter mass. When introduced into a material, muons interact with local magnetic fields, providing unique insights into the material’s structure and dynamics, especially for highly reactive species such as radicals.

In a new study, a team of researchers led by Associate Professor Shigekazu Ito, from the School of Materials and Chemical Technology, Institute of Science Tokyo, Japan, utilized ”SR spectroscopy to investigate the regioselective muoniation of peri-trifluoromethylated 12-phosphatetraphene 1. This compound is a phosphorus congener (a variant of a common chemical structure).

The process of ”SR spectroscopy initially involves the formation of a muonium (Mu), which is formed when a positively charged muon (”+) captures an electron (e–). This process continues as the reaction of a muonium (Mu = [”+e–]) with the phosphorus-containing compound, resulting in the formation of a muoniated radical at the phosphorus site.

Nanoscale ‘diamond rings’ provide unconventional giant ’magnetoresistance‘ for the development of new quantum devices

In recent years, technological advancements have made it possible to create synthetic diamonds that have similar physical and chemical properties to natural diamonds. While synthetic diamonds are not considered “fake” or “imitation,” they are often more affordable than their natural counterparts, making them a popular choice for those who want the beauty of a diamond without the high cost. Synthetic diamonds are also often more environmentally friendly, as they do not require the same level of mining and extraction as natural diamonds.

In its pristine state, diamond is a non-conductive material, devoid of or “holes” that can facilitate electrical conduction (Figure 1). However, by introducing into the diamond crystal lattice, its optical and electrical properties can be significantly altered. As the concentration of boron is increased, the diamond’s color shifts from its characteristic clear hue to a delicate shade of blue, while its electrical conductivity transforms from an insulator to a semiconductor.

Further increases in the boron content result in a lustrous blue shade that resembles the sheen of metallic surfaces and eventually culminates in a deep, ebony coloration. Such heavily boron-doped diamond (BDD) is also as electrically conducting as some metals, and at , exhibits superconductivity, allowing electrical conduction with no resistance.

The Potential Existence of Paraparticles, Once Considered “Impossible,” Now Mathematically Proven

For decades, the realm of particle physics has been governed by two major categories: fermions and bosons. Fermions, like quarks and leptons, make up matter, while bosons, such as photons and gluons, act as force carriers. These classifications have long been thought to be the limits of particle behavior. However, a breakthrough has recently changed this understanding.

Researchers have mathematically proven the existence of paraparticles, a theoretical type of particle that doesn’t fit neatly into the traditional fermion or boson categories. These exotic particles were once deemed impossible, defying the conventional laws of physics. Now, thanks to advanced mathematical equations, scientists have demonstrated that paraparticles can exist without violating known physical constraints.

The implications of this discovery could be far-reaching, especially in areas like quantum computing. Paraparticles could offer new possibilities in how we understand the universe at its most fundamental level. While the discovery is still in its early stages, it provides a new tool for physicists to explore more complex systems, potentially unlocking new technologies in the future.

Create Anything You Want With Programmable Matter

Share on Facebook: http://on.fb.me/13K5GUw.

What if you could fax someone a real, three-dimensional object? The solution might come in the form of programmable matter — a material that takes on predetermined shapes and can change its configuration on demand. We’re already seeing early prototypes coming from Carnegie Mellon and Intel in the form of “claytronics.” So what’s in store for this technology, and why should we be excited about it?

If you had a vat of claytronic atoms in front of you, what’s the first thing you’d build with it? Let us know in the comments below!

https://www.youtube.com/subscription_center?add_user=fwthinking.

For the audio podcast, blog and more, visit the Fw: Thinking website:
http://www.fwthinking.com.

Fw: Thinking on Twitter: http://www.twitter.com/fwthinking.

Sub-GeV dark matter hunt: SENSEI collaboration reports first findings

Detecting dark matter particles and understanding their underlying physics is a long-standing research goal for many researchers worldwide. Dark matter searches have been aimed at detecting different possible signals that could be associated with the presence of these elusive particles or with their interaction with regular matter.

A promising technology for conducting dark matter searches is the SENSEI (Sub-Electron Noise Skipper-CCD experimental instrument) detector, a highly sensitive imaging sensor located at the SNOLAB research facility in Canada.

The research group analyzing data collected by this detector, dubbed the SENSEI collaboration, have published the results of their first search for sub-GeV dark matter at SNOLAB in the journal Physical Review Letters.

NEON experiment shares results from first direct search for light dark matter

Detecting dark matter, the elusive type of matter predicted to account for most of the universe’s mass, has so far proved to be very challenging. While physicists have not yet been able to determine what exactly this matter consists of, various large-scale experiments worldwide have been trying to detect different theoretical dark matter particles.

One of these candidates is so-called light dark matter (LDM), particles with low masses below a few giga-electron volts (GeV/c2). Theories suggest that these particles could weakly interact with ordinary matter, yet the weakness of these interactions could make them difficult to detect.

The NEON (Neutrino Elastic Scattering Observation with Nal) collaboration, a group of researchers analyzing data collected by the NEON detector at the Hanbit nuclear reactor in South Korea, have published the results of their first direct search for LDM.