Toggle light / dark theme

“We’re showing that, everywhere we look now, there was some sort of magnetic field that was responsible for bringing mass to where the sun and planets were forming,” said Dr. Benjamin Weiss.


What can dust grains that were returned to Earth from the asteroid Ryugu teach scientists about the early solar system? This is what a recent study published in AGU Advances hopes to address as an international team of researchers led by the Massachusetts Institute of Technology (MIT) investigated how dust grains from the asteroid Ryugu that returned to Earth by Japan’s Hayabusa2 mission could help unlock secrets of the early solar system, specifically regarding the formation of the gas giants that orbit beyond the asteroid belt.

For the study, the researchers analyzed three dust grain particles for evidence of magnetic fields that might have existed when Ryugu first formed billions of years ago. In the end, they found that the particles displayed an ancient magnetic field equal to 15 microtesla, which is 30 percent of the Earth’s current magnetic field at 50 microtesla. Despite this decrease, the researchers hypothesize that this could be powerful enough to allow matter in the early solar system to coalesce, known as accretion, to form the asteroids and possibly the gas giants that orbit in the outer solar system approximately 4.6 billion years ago.

Coelacanths are strange fish that are currently only known from two species found along the East African coast and in Indonesia. A team from the Natural History Museum (MHNG) and the University of Geneva (UNIGE) has succeeded in identifying an additional species, with a level of detail never before achieved. This discovery was made possible by the use of the European Synchrotron Radiation Facility (ESRF) in Grenoble, a particle accelerator for analyzing matter.

Physicists show that neutron stars may be shrouded in clouds of ‘axions’ — and that these clouds can teach us a lot. A team of physicists from the universities of Amsterdam, Princeton and Oxford have shown that extremely light particles known as axions may occur in large clouds around neutron stars. These axions could form an explanation for the elusive dark matter that cosmologists search for — and moreover, they might not be too difficult to observe.

The Large Hadron Collider (LHC) is like an immensely powerful kitchen, designed to cook up some of the rarest and hottest recipes in the universe, like the quark–gluon plasma, a state of matter known to have existed shortly after the Big Bang. While the LHC mostly collides protons, once a year it collides heavy ions—such as lead nuclei—a key ingredient for preparing this primordial soup.

An experimental setup built at the Technion Faculty of Physics demonstrates the transfer of atoms from one place to another through quantum tunneling between optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, the research was published in Science Advances.

A group of scientists from Skoltech, led by Skoltech Vice President for Photonics Pavlos Lagoudakis, a laureate of the Vyzov (Challenge) prize, shared new results of the polariton condensate research. The team demonstrated that under optical excitation a polariton condensate can simultaneously occupy two closely spaced energy levels, which results in the formation of quantized vortex clusters. The outcomes of the study are prominent for optical tweezers, increasing the width of the data transmission channel in optical communication lines, and in other research areas. The paper was published in the Applied Physics Letters journal. It was featured on the cover of the weekly issue.

The new study is based on the previous work on optical vortices — optical beams that have their phase twisted in a spiral around the propagation axis. In 2022, Skoltech researchers, together with their colleagues from the University of Iceland and the University of Southampton, were the first to show how a cluster of quantized vortices with periodically flipping charges is formed in polariton condensates. The authors experimentally observed a cluster of four vortices and detected periodic flips of the signs of their charges with an interval of one fifth of a nanosecond.

“Polaritons are quasi-particles consisting of light and matter. They can form a macroscopic coherent state — Bose-Einstein condensate. This state behaves, roughly speaking, like one particle and is described by a single wave function. But the condensation of polaritons in inorganic microresonators is achieved not at room temperature, but at extremely low ones, therefore, to observe the condensation of polaritons, we place the sample in which they appear in a cryostat, where it is cooled to four degrees Kelvin,” says Kirill Sitnik, the first author of the study, a junior research scientist at the Skoltech Photonics Center’s Laboratory of Hybrid Photonics.

Fermilab is tackling the extreme conditions generated in neutrino experiments to ensure the success of future research.


“Researchers need to overcome three challenges to make a lasting target: radiation damage, high temperatures and stress from thermal expansion,” remarked the press release.

Nanofibers, incredibly thin threads with exceptional strength and flexibility, are being investigated for their ability to better absorb the shock of the proton beam.

“A nanofiber developed by Fermilab engineer Sujit Bidhar is being researched as a potential target material due to its ability to mitigate thermal shock and be more resistant to radiation damage,” highlighted the press release.