Researchers at the University of Reading and University College London have developed a new artificial intelligence model that can predict how atoms arrange themselves in crystal structures. Called CrystaLLM, the technology works similarly to AI chatbots, by learning the “language” of crystals by studying millions of existing crystal structures. It could lead to faster discovery of new materials for everything from solar panels to computer chips.
Category: particle physics – Page 67
Nuclear theorists at Brookhaven National Laboratory and Argonne National Laboratory have successfully employed a new theoretical approach to calculate the Collins-Soper kernel, a quantity that describes how the distribution of quarks’ transverse momentum inside a proton changes with the collision energy.
The research is published in the journal Physical Review D.
The new calculation precisely matches model-based reconstructions from particle collision data. It is particularly effective for quarks with low transverse momenta, where earlier methods fell short.
The universe is a stage filled with extreme phenomena, where temperatures and energies reach unimaginable levels. In this context, there are objects such as supernova remnants, pulsars, and active galactic nuclei that generate charged particles and gamma rays with energies far exceeding those involved in nuclear processes like fusion within stars. These particles, as direct witnesses of extreme cosmic processes, offer key insights into the workings of the universe.
Gamma rays, for instance, have the ability to traverse space without being altered, providing direct information about their sources of origin. However, charged particles, known as cosmic rays, face a more complex journey. When interacting with the omnipresent magnetic fields of the cosmos, these particles are deflected and lose part of their energy, especially high-energy electrons and positrons, referred to as cosmic-ray electrons (CRe). With energies surpassing one teraelectronvolt (TeV)—a thousand times more than visible light— these particles gradually fade away, complicating the identification of their point of origin.
Detecting high-energy particles such as CRe is a monumental task. Space instruments, with their limited detection areas, fail to capture sufficient particles at these extreme energies. On the other hand, ground-based observatories face an additional challenge: distinguishing particle cascades triggered by cosmic-ray electrons from the far more frequent ones generated by protons and heavier cosmic-ray nuclei.
It was 1,229 CE in the monastery of St Sabas, near Jerusalem, and a monk named Johannes Myronas was in need of some parchment. He had evidently been tasked with creating a copy of the Euchologion – an important book of prayer and worship directions for Eastern Orthodox and Byzantine Catholic churches.
The problem was, parchment was expensive and hard to come by. Recycling was the name of the game, and Johannes had just the thing: a 200-year-old manuscript filled with old math notes that nobody was all that interested in anymore. Compared with the Holy Word, there was no contest: he pulled it apart, scraped the old text off, and used the pages for the new book – a technique known as palimpsesting.
You probably know where this is going. In creating his Euchologion, Johannes had – presumably unwittingly – destroyed one of the most valuable relics of Archimedes’s work. Not just some notebook or single treatise, even: the manuscript now known as “Codex C” contained multiple works from the ancient polymath, some of which now exist nowhere else in the world.
The larger challenge for hydrogen is sourcing it from green suppliers. Electrolyzers are used to harvest green hydrogen by splitting water into its component atoms. For the hydrogen to be green it has to either come from natural-occurring sources which are rare or from producing it using renewable energy generated by hydro, solar, onshore, and offshore wind turbines. Building an electrolyzer infrastructure would be key to creating hydrogen-powered vehicles for long-distance travel with quick refuelling turnarounds. The trucking industry is likely the best candidate for the use of this fuel and technology.
Making ICE-Powered Vehicles More Efficient.
About 99% of global transportation today runs on ICE with 95% of the energy coming from liquid fuels made from petroleum. Experts at Yanmar Replacements Parts, a diesel engine aftermarket supplier, state that, “while hydrogen-powered and electric vehicles will be on the rise, ICEs will continue to remain the norm and will be for the foreseeable future.” That’s why companies are reluctant to abandon ICE to make the technology more compatible to lower carbon emissions. By choosing different materials during manufacturing, automotive companies believe that production emissions can be abated by 66%.
Researchers developed CrystaLLM, an AI model predicting crystal structures without traditional physics-based simulations. By analyzing millions of existing structures, it predicts realistic arrangements of atoms, even for unfamiliar materials.
In a groundbreaking development, researchers at the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, have made a remarkable leap in understanding the fundamental forces of nature. For the first time, they have observed quantum entanglement between top quarks—the heaviest elementary particles—at unprecedented energy levels. This discovery not only pushes the boundaries of particle physics but also opens the door to new possibilities in the quest to understand the universe.
At the heart of this discovery is quantum entanglement, one of the most puzzling and fascinating phenomena in the realm of quantum mechanics. Entanglement occurs when two or more particles become linked in such a way that the state of one particle instantaneously influences the state of another, regardless of the distance between them. This defies our classical understanding of the world, where objects should only interact when they are physically close to one another.
Imagine you have two particles, each spinning in a specific direction. Normally, if one particle changes its state, the other should remain unaffected. But with quantum entanglement, a change in the spin or state of one particle immediately alters the other, even if they are light-years apart. It’s as if the particles are communicating across vast distances without any delay.
A new vortex electric field with the potential to enhance future electronic, magnetic and optical devices has been observed by researchers from City University of Hong Kong (CityUHK) and local partners.
The research, “Polar and quasicrystal vortex observed in twisted-bilayer molybdenum disulfide” published in Science, is highly valuable as it can upgrade the operation of many devices, including strengthening memory stability and computing speed.
With further research, the discovery of the vortex electric field can also impact the fields of quantum computing, spintronics, and nanotechnology.
The Higgs boson, often dubbed the “God particle,” has been a focal point of physics since its groundbreaking discovery in 2012. This elusive particle plays a crucial role in our understanding of how elementary particles acquire mass, a concept that has puzzled scientists for decades. But the excitement doesn’t stop there. Seven years after its discovery, new findings from researchers at the Max Planck Institute are taking our knowledge of the Higgs boson to an entirely new level. These advancements promise to unravel deeper mysteries of the universe and open doors to future scientific exploration.
To fully appreciate the recent developments in Higgs boson research, it’s important to revisit the concept of this fundamental particle. In the Standard Model of particle physics, the Higgs boson is the particle responsible for giving mass to other particles. But how exactly does this happen? The answer lies in the Higgs field—a sort of invisible “medium” that permeates the universe, even in a vacuum.
Imagine you’re trying to walk through a swimming pool. When the water is still, you move easily, but if the pool were filled with foam, your movements would slow down considerably. The Higgs field operates similarly, with particles gaining mass as they interact with it, much like how a swimmer would find it harder to move through foam. The more a particle interacts with this field, the more mass it acquires, which allows particles to form the building blocks of matter as we know it.
An experiment more than 10 years in the making has delivered its first glimpse of the hurricane of particles whirring inside subatomic particles called neutrons, laying the groundwork to solve a mystery deep in the heart of matter.
Data from the Central Neutron Detector at the US Department of Energy’s Thomas Jefferson National Accelerator Facility (TJNAF) is already playing a role in describing the quantum map of the neutron’s engine.
“It’s a quite important result for the study of nucleons,” says Silvia Niccolai, a research director at the French National Centre for Scientific Research.