Toggle light / dark theme

Quantum machine offers peek into ‘dance’ of cosmic bubbles

Physicists have performed a groundbreaking simulation they say sheds new light on an elusive phenomenon that could determine the ultimate fate of the Universe.

Pioneering research in quantum field theory around 50 years ago proposed that the universe may be trapped in a false vacuum — meaning it appears stable but in fact could be on the verge of transitioning to an even more stable, true vacuum state. While this process could trigger a catastrophic change in the Universe’s structure, experts agree that predicting the timeline is challenging, but it is likely to occur over an astronomically long period, potentially spanning millions of years.

In an international collaboration between three research institutions, the team report gaining valuable insights into false vacuum decay — a process linked to the origins of the cosmos and the behaviour of particles at the smallest scales. The collaboration was led by Professor Zlatko Papic, from the University of Leeds, and Dr Jaka Vodeb, from Forschungszentrum Jülich, Germany.

Self-powered sensor can generate electricity and light simultaneously using only movement

DGIST research teams have developed a self-powered sensor that uses motion and pressure to generate electricity and light simultaneously. This battery-free technology is expected to be used in various real-life applications, such as disaster rescue, sports, and wearable devices.

Triboelectric nanogenerators (TENG) and mechanoluminescence (ML) have attracted attention as green energy technologies that can generate electricity and light, respectively, without external power. However, researchers in previous studies mainly focused on the two technologies separately or simply combined them. Moreover, the power output stability of TENG and the insufficient luminous duration of ML materials have been major limitations for practical applications.

The research team has developed a system that generates electricity and light simultaneously using motion and pressure. They added light-emitting zinc sulfide-copper (ZnS: Cu) particles to a rubber-like material (polydimethylsiloxane [PDMS]) and designed a single electrode structure based on silver nanowires to obtain high efficiency. The developed device does not degrade in performance even after being repeatedly pressed more than 5,000 times, and it stably generates voltages of up to 60 V and a current of 395 nA.

This Strange Motion Keeps Appearing Everywhere — Even in High-Energy Collisions

Particles in high-energy nuclear collisions move in a way that follows a pattern known as Lévy walks, a motion found across many scientific fields.

Named after mathematician Paul Lévy, Lévy walks (or, in some cases, Lévy flights) describe a type of random movement seen in nature and various scientific processes. This pattern appears in diverse phenomena, from how predators search for food to economic fluctuations, microbiology, chemical reactions, and even climate dynamics.

Lévy walks in high-energy nuclear collisions.

Quantum Billiards: Cracking the Code of Light-Assisted Atomic Collisions

In a groundbreaking study, scientists developed new ways to control atom collisions using optical tweezers, offering insights that could advance quantum computing and molecular science. By manipulating light frequencies and atomic energy levels, they mapped out how specific atomic characteristics influence collision outcomes, paving the way for more precise quantum manipulation.

Decades-Old Chemical Puzzle Solved: Scientists Synthesize Never-Before-Seen Bismuth Molecule

KIT researchers lay the foundation for new materials and chemical processes by synthesizing an unusual molecule.

Researchers at the Karlsruhe Institute of Technology (KIT) have successfully synthesized and stabilized a Bi₅⁻ ring—a molecule composed of five bismuth atoms—within a metal complex. This achievement fills a key gap in chemical research and opens new possibilities for applications in materials science, catalysis, and electronics. The study has been published in Nature Chemistry.

“By synthesizing the Bi5–ring, we’ve answered a long-standing question of basic research. In the future, this molecule could play an important role in the development of new materials and chemical processes,” said Professor Stefanie Dehnen from KIT’s Institute for Inorganic Chemistry, where she heads the cluster-based materials research group.

Microsoft (Again) Claims Topological Quantum Computing With Majorana Zero Mode Anyons

As the fundamental flaw of today’s quantum computers, improving qubit stability remains the focus of much research in this field. One such stability attempt involves so-called topological quantum computing with the use of anyons, which are two-dimensional quasiparticles. Such an approach has been claimed by Microsoft in a recent paper in Nature. This comes a few years after an earlier claim by Microsoft for much the same feat, which was found to be based on faulty science and hence retracted.

The claimed creation of anyons here involves Majorana fermions, which differ from the much more typical Dirac fermions. These Majorana fermions are bound with other such fermions as a Majorana zero mode (MZM), forming anyons that are intertwined (braided) to form what are in effect logic gates. In the Nature paper the Microsoft researchers demonstrate a superconducting indium-arsenide (InAs) nanowire-based device featuring a read-out circuit (quantum dot interferometer) with the capacitance of one of the quantum dots said to vary in a way that suggests that the nanowire device-under-test demonstrates the presence of MZMs at either end of the wire.

Microsoft has a dedicated website to their quantum computing efforts, though it remains essential to stress that this is not a confirmation until their research is replicated by independent researchers. If confirmed, MZMs could provide a way to create more reliable quantum computing circuitry that does not have to lean so heavily on error correction to get any usable output. Other, competing efforts here include such things as hybrid mechanical qubits and antimony-based qubits that should be more stable owing to their eight spin configurations.

Chemists find greener path to making ethylene oxide, a key industrial chemical

Scientists have discovered a potentially greener way to produce a crucial industrial chemical used to make many everyday products, from plastics and textiles to antifreeze and disinfectants, according to a study published in Science and co-authored by Tulane University chemical engineer Matthew Montemore.

The breakthrough could significantly reduce from the manufacture of ethylene oxide, which has an estimated $40 billion global market. The current production process requires chlorine, which is toxic and emits millions of tons of carbon dioxide into the atmosphere annually.

The research team, led by Montemore, as well as Tufts University chemistry professor Charles Sykes and University of California Santa Barbara (UCSB) chemical engineering professor Phillip Christopher, found that adding small amounts of nickel atoms to silver catalysts can maintain while eliminating the need for chlorine in the process.

Microsoft deploys new state of matter in its first quantum computing chip

The achievement comes after the company spent nearly two decades of research in the field, but Microsoft claims that building Majorana 1 required that it create an entirely new state of matter, which it is referring to as a topological state.

Microsoft’s quantum chip employs eight topological qubits using indium arsenide, which is a semiconductor, and aluminum, which is a superconductor.

“The difficulty of developing the right materials to create the exotic particles and their associated topological state of matter is why most quantum efforts have focused on other kinds of qubits,” the company said in a blog Wednesday.

Yujin Nagasawa — What is Panpsychism?

Make a donation to Closer To Truth to help us continue exploring the world’s deepest questions without the need for paywalls: https://shorturl.at/OnyRq.

Sign up for member-only exclusives with a free Closer To Truth account today: https://closertotruth.com/.

Panpsychism is the extreme claim that everything in the physical world—all subatomic particles-are in some sense ‘conscious’ or have a basic kind of ‘proto-consciousness’. Why are an increasing number of leading philosophers taking panpsychism seriously? Something must be up. Could it be doubt that the scientific project to explain consciousness has failed?

Yujin nagasawa is the kingfisher college chair of the philosophy of religion and ethics, and professor of philosophy at the university of oklahoma.

Watch more videos on panpsychism and consciousness: https://shorturl.at/acpR0

Bacteria on marine particles play key role in ocean nitrogen cycle

It has puzzled scientists for years whether and how bacteria, that live from dissolved organic matter in marine waters, can carry out N2 fixation. It was assumed that the high levels of oxygen combined with the low amount of dissolved organic matter in the marine water column would prevent the anaerobic and energy consuming N2 fixation.

Already in the 1980s it was suggested that aggregates, so-called “marine snow particles,” could possibly be suitable sites for N2 fixation, and this was recently confirmed. Still, it has been an open question why the carrying out this N2 fixation can be found worldwide in the ocean. Moreover, the global magnitude and the distribution of the activity have been unknown… until now.

In a new study, researchers from the Leibniz Centre for Tropical Marine Research in Germany, Technical University of Denmark, and the University of Copenhagen demonstrate, by use of mechanistic mathematical models, that bacteria attached to marine snow particles can fix N2 over a wide range of temperatures in the global oceans, from the tropics to the poles, and from the surface to the abyss.