Toggle light / dark theme

PUNCH sees first light, prepares to study how the Sun creates our space weather

The NFI opened its eye to the sky first on April 14, imaging the Sun against the background stars of the constellation Pisces. The view here has been specifically filtered to bring out those background stars, which are otherwise blotted out by the bright zodiacal light generated by sunlight glinting off dust particles in the inner solar system. Also visible is a sliver of the Sun’s corona at center, reminiscent of the view during an annular solar eclipse.

You might notice several strange, streaky crescent-shaped artifacts at right. These arise from a small misalignment between the imager and the Sun, allowing stray sunlight to glint off the optics where it’s not quite blocked by the coronagraph. Engineers will use this and subsequent images to adjust the NFI’s position on the sky to bring it in full alignment with our star and eliminate stray light in future scientific data. Ultimately, that calibration will allow just one percent of the corona’s light through to the imager, providing clear views of faint structures and changes within the corona as the Sun spews material out into space.

Two days later, on April 16, the three WFIs got their first look at the Sun, taking in a broad view across the solar system. These instruments are designed to look at the region of space out to some 45° from the Sun’s position, roughly out to the distance of Earth’s orbit projected on the sky. Their fields of view don’t overlap, but instead form a trefoil pattern that rotates over time.

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices.

A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices.

Their study, published in Physical Review Letters.

Quantum surprise: Matter mediates ultrastrong coupling between light particles

A team of Rice University researchers has developed a new way to control light interactions using a specially engineered structure called a 3D photonic-crystal cavity. Their work, published in the journal Nature Communications, lays the foundation for technologies that could enable transformative advancements in quantum computing, quantum communication and other quantum-based technologies.

“Imagine standing in a room surrounded by mirrors,” said Fuyang Tay, an alumnus of Rice’s Applied Physics Graduate Program and first author of the study. “If you shine a flashlight inside, the light will bounce back and forth, reflecting endlessly. This is similar to how an works—a tailored structure that traps light between reflective surfaces, allowing it to bounce around in specific patterns.”

These patterns with discrete frequencies are called cavity modes, and they can be used to enhance light-matter interactions, making them potentially useful in , developing high-precision lasers and sensors and building better photonic circuits and fiber-optic networks. Optical cavities can be difficult to build, so the most widely used ones have simpler, unidimensional structures.

New quantum ‘game’ showcases the promise of quantum computers

Imagine the tiniest game of checkers in the world—one played by using lasers to precisely shuffle around ions across a very small grid.

That’s the idea behind a recent study published in the journal Physical Review Letters. A team of theoretical physicists from Colorado has designed a new type of quantum “game” that scientists can play on a real quantum computer—or a device that manipulates small objects, such as atoms, to perform calculations.

The researchers even tested their game out on one such device, the Quantinuum System Model H1 Quantum Computer developed by the company Quantinuum. The study is a collaboration between scientists at the University of Colorado Boulder and Quantinuum, which is based in Broomfield, Colorado.

Astrophysicists propose new method to directly detect ultralight dark matter

The detection of dark matter, the elusive type of matter predicted to make up most of the universe’s mass, is a long-standing goal in the field of astrophysics. As dark matter does not emit, reflect or absorb light, it cannot be observed using conventional experimental methods.

A promising dark matter candidate is so-called ultralight dark matter, which consists of particles with extremely low masses. Astrophysicists have been searching for these ultralight using various approaches and methods, yet they have not yet been detected.

Researchers at the University of Florida recently proposed a new method for the direct detection of ultralight dark matter particles, which is based on astrometry, the precise measurement of the positions and motions of celestial objects.

Integration method enables high-performance oxide-based spintronic devices on silicon substrates

A research team from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has proposed a hybrid transfer and epitaxy strategy, enabling the heterogeneous integration of single-crystal oxide spin Hall materials on silicon substrates for high-performance oxide-based spintronic devices.

The study is published in Advanced Functional Materials.

Spintronic devices are gaining attention as a key direction for next-generation information technologies due to their , non-volatility, and ultra-fast operating capabilities.

Secrets of superfluid: How dipolar interactions shape two-dimensional superfluid behavior

In a recent study, researchers made a significant observation of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in a 2D dipolar gas of ultracold atoms. This work marks a milestone in understanding how 2D superfluids behave with long-range and anisotropic dipolar interactions. The researchers are an international team of physicists, led by Prof. Jo Gyu-Boong from the Department of Physics at the Hong Kong University of Science and Technology (HKUST).

Their findings are published in the journal Science Advances.

In conventional three-dimensional (3D) systems, , such as ice melting into water, are governed by the spontaneous breakdown of symmetries. However, pioneering work in the 1970s predicted that two-dimensional (2D) systems could host a unique topological phase transition known as the BKT transition, where vortex-antivortex pairs drive superfluidity without conventional symmetry breaking, with interaction playing a crucial role. Since then, this phenomenon had primarily been studied in various quantum systems with only short-range isotropic contact interactions.

/* */