Toggle light / dark theme

Researchers at Tel Aviv University have for the first time demonstrated the backflow of optical light propagating forward. The phenomenon, theorized more than 50 years ago by quantum physicists, has never before been demonstrated successfully in any experiment—until now.

“This ‘backflow’ phenomenon is quite delicate and requires exquisite control over the state of a particle, so its demonstration was hindered for half a century,” explains Dr. Alon Bahabad of the Department of Physical Electronics at TAU’s School of Electrical Engineering, who led the research for the study.

“This phenomenon reveals an unintuitive behavior of a system comprised of , whether it’s a particle in quantum mechanics or a . Our demonstration could help scientists probe the atmosphere by emitting a laser and inducing a signal propagating backward toward the laser source from a given point in front of the laser source. It’s also relevant for cases in which fine control of light fields is required in small volumes, such as optical microscopy, sensing and optical tweezers for moving ,” Dr. Bahabad says.

A tiny nanoparticle has been chilled to the max.

Physicists cooled a nanoparticle to the lowest temperature allowed by quantum mechanics. The particle’s motion reached what’s known as the ground state, or lowest possible energy level.

In a typical material, the amount that its atoms jostle around indicates its temperature. But in the case of the nanoparticle, scientists can define an effective temperature based on the motion of the entire nanoparticle, which is made up of about 100 million atoms. That temperature reached twelve-millionths of a kelvin, scientists report January 30 in Science.

Braintree founder Bryan Johnson, MBA’07, invests in bold ventures on the next frontier.

Bryan Johnson is determined to explore the depths of your mind and help save humanity from its direst threats.

“The biggest revolutions that have happened over the past couple of decades have largely been done on silicon—the transistors we build, the computers we have, the internet, our smartphones,” said Johnson, MBA’07. “The next great revolutions will be evolving our cognition and predictably engineering atoms, molecules, organisms and complex systems.”

When mysterious glowing stripes of green lit up Finnish skies in 2018, it didn’t go unnoticed by avid aurora chasers. The pattern of light was unfamiliar and strangely perfect, reaching out toward the horizon like a set of celestial sand dunes.

Sure enough, the light show dubbed by the citizen scientists as “the dunes” turned out to be a new type of aurora. This aurora is formed by the dramatic dance of gravity waves and oxygen atoms, according to new findings published today (Jan. 29) in the journal AGU Advances.

On 12. June 2013 the third test fire of the DHX-200 “Aurora” hybrid rocket motor took place at the facilities of TNO. The Aurora motor will power the Stratos II rocket and utilizes nitrous oxide as oxidizer and a fuel combination of sorbitol, paraffin wax, and aluminium particles as fuel.
The motor was intended to be fired for 15 seconds after the successful 10 second test earlier this day but was shutdown prematurely at around 6 seconds after the combustion chamber showed local structural failure.
The sequence involves the following steps:

T — 4s : Nitrous Oxide bypass flow initiated
T — 3s : Ignition pulse for pyrotechnic igniter
T 0s : Main valve open
T + 6s : Main valve closed (safety precaution)
T + 15s : Scheduled motor cut-off

Read the full story on: http://projectstratos.nl/2013/06/2011/

Essentially the higgs mode is like a developer mode for materials and even physics by itself. It could make metals that are as light as a feather but essentially as strong as a universe. It could make essentially near infinitely strong metals that could be put on spaceships to handle all manners of energy blasts. Even weird things could happen where like even changing dimension al physics of areas. Essentially a near cartoon like physics or even prove the existence of the stranger things dimension really happened. Even keep out other dimensions from entering our universe. Even controlling the universe itself by healing it. Essentially like it could allow the monitor from halo kinda developer mode to modify gravity or all variables or even bring new variables into the dimension.


Condensed-matter analogues of the Higgs boson in particle physics allow insights into its behaviour in different symmetries and dimensionalities1. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases2, disordered superconductors3, and dimerized quantum magnets4. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems, where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2RuO4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed-matter platform for research on the dynamics of the Higgs mode.